
XIX All-Siberian Programming Contest named after I.V. Pottosin

Onsite tour, II day, Novosibirsk SU, November 18, 2018

Problem 1. Product
Input file: input.txt

Output file: output.txt

Time limit: 1 second
Memory limit: 256 megabytes

Given a list of numbers, determine whether one of these numbers equals the product of all the
other numbers.

Input

The first line of the input file contains a single integer 𝑁 — the number of elements in the initial
list (2 ≤ 𝑁 ≤ 105). The next line contains 𝑁 space-separated numbers constituting the list. Each
of these numbers is an integer not greater than 109 in absolute value.

Output

In the first line of the output file, print Yes or No, depending on whether some number from the
list is equal to the product of all the other numbers — or not. If the answer is Yes, in the second
line, print such a number. If several numbers satisfy the conditions of the problem, print any of
them.

Example

input.txt output.txt

3

2 4 2

Yes

4

2

2 3

No

Page 1 of 21

XIX All-Siberian Programming Contest named after I.V. Pottosin

Onsite tour, II day, Novosibirsk SU, November 18, 2018

Problem 2. Driving the Gnu
Input file: input.txt

Output file: output.txt

Time limit: 2 seconds
Memory limit: 256 megabytes

Adam Kazimirovicz is racing his car, the Gnu, at the speed of 𝑣, across the vast cathedral square.
Suddenly, a priest appears in his way, trying to fool Adam. The priest is a segment of the length 𝑤,
perpendicular to Adam’s trajectory, with its center on the trajectory. The initial distance between
the car and the priest is 𝑑.

Enter Ostap — he overrides Adam’s panicked driving in an attempt to avoid the collision with the
priest. For this purpose, he can accelerate the car at every moment in any direction. Note that at
different moments in time, both the module and the direction of the acceleration can be changed.
However, Ostap is not omnipotent; hence, the acceleration module at each moment in time cannot
be greater than 𝑎.

Find the minimal possible value of 𝑎 sufficient to avoid the collision.

Input

The first line of the input file contains an integer 𝑇 — the number of test cases (1 ≤ 𝑇 ≤ 5 · 104).
The following 𝑇 lines each contain three integers 𝑣, 𝑑 and 𝑤 — the initial velocity of the car, the
initial distance from the Gnu to the priest, and the length of the segment (1 ≤ 𝑣, 𝑑, 𝑤 ≤ 1000).

Output

The output file must contain 𝑇 lines, the 𝑖th line must contain the answer to the 𝑖th test case.
The answer is the minimal possible value 𝑎 sufficient to avoid a collision.

The absolute or relative error of each answer must not be greater than 10−10.

Example

input.txt output.txt

1

10 3 1

10.510002209123385

Page 2 of 21

XIX All-Siberian Programming Contest named after I.V. Pottosin

Onsite tour, II day, Novosibirsk SU, November 18, 2018

Problem 3. Crazy minesweeper
Input file: standard input stream

Output file: standard output stream

Time limit: 1 second
Memory limit: 256 megabytes

In this problem, we will be playing a popular game, «Minesweeper».

The game takes place on a rectangular field with 𝐻 ×𝑊 cells. 𝐾 mines are randomly placed in
the cells of the field, and their locations are unknown to the player. The goal is to find the mines
safely.

Initially, all cells are «closed». The player can «open» any cell in the field. If there is a mine in the
opened cell, the game ends. Otherwise, the player is informed about the number of mines in the
cells adjacent to that cell by their sides or corners. The game ends when precisely 𝐾 cells remain
closed in the field — i.e. the cells containing mines.

Often, the available information is insufficient to determine the precise location of the mines. In
these cases, the player has to guess and tries to open a cell which may contain a mine. To minimize
the effect of these dangerous situations, the player can make up to six mistakes by opening a cell
with mine. On opening such cell, the player is informed about the mine, the cell remains closed,
and the game continues. If you open a mine-containing cell for the seventh time, you will lose.

The game fields are generated randomly in the following manner. The jury defines the field
size 𝑊 by 𝐻, the number of mines 𝐾 and the magic number 𝑆. After that, the following
pseudorandom sequence of integers is generated:

𝑇0 = 𝑆

𝑇𝑖+1 = (48 271 * 𝑇𝑖) mod 2 147 483 647

Then the mine locations are obtained from this sequence. Its elements 𝑇1, 𝑇2, 𝑇3, . . . are iterated in
order. For each element 𝑇𝑖, the row index 𝑟𝑖 and the column index 𝑐𝑖 are obtained using formulas:

𝑟𝑖 =

⌊︂
𝑇𝑖
𝑊

⌋︂
mod 𝐻 𝑐𝑖 = 𝑇𝑖 mod 𝑊,

and the mine is set into the corresponding cell, if it is not yet there. The process of setting mines
ends as soon as the number of mines becomes equals to 𝐾.

The rows and colums are numbered from zero.

Interaction Protocol

This is an interactive problem. Instead of working with file input-output, you will be working
with a special program— an interactor. Interacting with this program is performed through the
standard input-output streams.

Upon the start, the input stream of your program is given a line containing three integers 𝐻, 𝑊
and 𝐾. In all tests, 𝐻 = 16, 𝑊 = 30, and number 𝐾 is chosed randomly in range from 100 to
200 inclusive. The magic number 𝑆 is not provided in the input, but jury chooses it randomly in
range from 100 to 10 000 inclusive.

Page 3 of 21

XIX All-Siberian Programming Contest named after I.V. Pottosin

Onsite tour, II day, Novosibirsk SU, November 18, 2018

Next, your program must send opening queries to the standard output stream. Each query must
consist of a single line with two numbers: the row index 𝑟 (0 ≤ 𝑟 ≤ 𝐻 − 1) and column index 𝑐
(0 ≤ 𝑐 ≤ 𝑊 − 1) of the cell which is opened.

When each query is sent, one of the following responses is possible:

∙ Empty, followed by an integer from 0 to 8 — you have opened an empty cell, and the number
of mines in the adjacent cells is provided.

∙ Boom — you have attempted to open a cell with a mine and made one of the forgivable errors.
∙ Lose — you have stepped on a mine and lost.
∙ Win — you win. Yay!

The answers Empty and Boom mean that the game continues. After getting the answers Lose or
Win your game must end without printing anything else into the standard output stream. You
can open one cell several times. The number of queries must not exceed 2 ·𝑊 ·𝐻, otherwise the
solution will get the Wrong Answer verdict. Make sure you print the line break symbol and flush
the output stream buffer (the flush command of the programming language) after each printed
command. Otherwise the solution can get the Timeout verdict.

Example

standard input stream standard output stream

16 30 137

Boom

Empty 2

Empty 0

Empty 2

Boom

Empty 6

...

Win

0 0

0 2

15 29

14 27

15 26

4 15

...

15 28

Example explanation

The fully uncovered field in the sample (which is also the first test) is:

X2223X20013X310011100123211XXX

24XX3X2001XXX2122X2111XXX22343

X4X32111235X43X5X43X34443X23X3

X3110113XX3X34XXXX33XXX334X5XX

110112X4X4322XX654X334XX2XXX5X

0001X22X23X323XX2X4X212222334X

1112211112XX1234323X20122101X3

X33X2221135533X3X222112XX2012X

2XX33XX22XXXX3X313X201X6X42121

234X445X335X442213X2013XXX2X10

X22X4XX22X33X3X11X22124X633232

X3325X4112X34X312221X3XX3X12XX

3X2X4X41124X4X323X113X534333X3

X2214XX22X3X312XX3203X5X4XX211

11014X53X22121223X102X4X4X4200

0001XX3X21001X101110112122X100

Page 4 of 21

XIX All-Siberian Programming Contest named after I.V. Pottosin

Onsite tour, II day, Novosibirsk SU, November 18, 2018

Problem 4. Error in code
Input file: input.txt

Output file: output.txt

Time limit: 5 seconds
Memory limit: 256 megabytes

A rookie programmer wrote a program in C++.

1. First, the program reads the incidence matrix of an unoriented graph for 𝑁 nodes and writes
it into an array of 32-bit integers 𝑔. After reading the value 𝑔[𝑢][𝑣] equals one if the graph
has an edge between the nodes 𝑢 and 𝑣, or 9999, if there is no edge (for 1 ≤ 𝑢 ̸= 𝑣 ≤ 𝑁).
The main diagonal in the matrix contains zeroes.

2. After reading the graph the following piece of code in the program is run:

f o r (i n t w = 1 ; w < N; w = w + 1) {
f o r (i n t u = 1 ; u < N; u = u + 1) {

f o r (i n t v = 1 ; v < N; v = v + 1) {
g [u] [v] = min (g [u] [v] , g [u] [w] + g [w] [v]) ;

}
}

}

3. After that, the resulting matrix is written into a file.

The programmmer launched his program on a set of graphs, and after some tedious waiting finally
decided to take a look at the results. Which were, of course, disappointing. You guessed right —
the programmer wanted to calculate the matrix of the shortest distances between all nodes in the
graph. However, the program was flawed. The programmer can fix everything himself, but waiting
for the program to recalculate the results takes too much precious time. We suggest that you write
a program that takes the results of the unlucky programmer’s code and returns a matrix of the
shortest distances.

Input

The first line of the input file contains a single integer 𝑁 (1 ≤ 𝑁 ≤ 2 000). The 𝑖th of the following
𝑁 lines contains a sequence of 𝑁 numbers, with the 𝑗th number equal to the value 𝑔[𝑖][𝑗] after
running the algorithm provided above (0 ≤ 𝑔[𝑖][𝑗] ≤ 9999).

Output

Print 𝑁 lines. The 𝑖th line must contain a sequence of space-separated numbers, with the 𝑗th
number equal to the length of the shortest path in the graph between the nodes 𝑖 and 𝑗, or the
number 9999, if there is no path between these two nodes.

Example

input.txt output.txt

3

0 1 1

1 0 9999

1 9999 0

0 1 1

1 0 2

1 2 0

Page 5 of 21

XIX All-Siberian Programming Contest named after I.V. Pottosin

Onsite tour, II day, Novosibirsk SU, November 18, 2018

Problem 5. Birthday
Input file: input.txt

Output file: output.txt

Time limit: 4 seconds
Memory limit: 256 megabytes

Malvina wants to give Buratino a birthday present — an unoriented graph 𝐺 = (𝑉,𝐸). Buratino
is turning 𝑘, and Malvina wants to reflect this date in the graph by splitting it into 𝑘 parts, that
is, by presenting the range of nodes of the graph 𝑉 as 𝑘 pairwise disjoint subranges 𝑉1, 𝑉2, . . .,
𝑉𝑘. Naturally, in this partition, all of the subranges 𝑉𝑖 must be non-empty.

To demonstrate the connection between the past 𝑘 years, Malvina wants to split the graph in such
a manner that for each of the edges 𝑢𝑣, its end nodes 𝑢 and 𝑣 belonged to either the same or two
adjacent subranges. Subranges are adjacent when 𝑉𝑖 and 𝑉𝑖+1 for 𝑖 = 1, 2, . . . 𝑘 − 1.

Input

The first line of the input file contains two space-separated numbers 𝑁 and 𝑘— the number of
nodes in the graph (1 ≤ 𝑁 ≤ 2 000) and the number of parts (1 ≤ 𝑘 ≤ 2 000) that the graph must
be divided into.

The graph is defined in an adjacency matrix 𝐺. The following 𝑁 lines of the file each contain 𝑁
symbols. The 𝑗th symbol of the 𝑖th line equals ‘1’ if there is an edge between the nodes 𝑖 and 𝑗,
and ‘0’ if there is no edge between these nodes. It is guaranteed that the matrix is symmetrical
(𝑔𝑖,𝑗 = 𝑔𝑗,𝑖), and that that the matrix diagonal only contains zeroes (𝑔𝑖,𝑖 = 0).

Output

In the first line of the output file, print “Yep”, if the graph can be split into 𝑘 parts in the desired
manner. Next, print 𝑘 lines. The 𝑖th line(𝑖 = 1, 2, . . ., 𝑘) contains the description of the 𝑖th
part: first, print the number of nodes in 𝑉𝑖, next print the numbers of the nodes belonging to 𝑉𝑖,
separated by spaces, numbered in the same order as in the input data. If there are several ways
of splitting the graph, print any one of them.

If it is impossible to split the graph into 𝑘 parts in the desired way, print “Nope”.

Examples

input.txt output.txt

4 3

0110

1010

1101

0010

Yep

1 2

2 1 3

1 4

3 3

011

101

110

Nope

Page 6 of 21

XIX All-Siberian Programming Contest named after I.V. Pottosin

Onsite tour, II day, Novosibirsk SU, November 18, 2018

Problem 6. Gas penalties
Input file: input.txt

Output file: output.txt

Time limit: 3 seconds
Memory limit: 256 megabytes

Pasha has entered a desert navigation contest, «World Sensei of Orienteering 2018» (WSO 2018).
The desert can be viewed as an endless plane. The desert has been prepared for the contest,
with 𝑛 checkpoints numbered, in numerical order, from 1 to 𝑛, the 𝑖th checkpoint having the
coordinates (𝑥𝑖, 𝑦𝑖).

The contest rules are the following:

1. All participants are sent to the start checkpoint with the number 𝑠 (1 6 𝑠 6 𝑛).

2. Each participant is given a truck with a gas tank capacity of 𝑣 and fuel efficiency of one liter
per length unit (meaning that covering a unit of distance takes a the same amount of fuel
in liters). Initially, the tank is empty.

3. The participants can only fill the tank at checkpoints. Buying one liter of fuel at 𝑖th
checkpoint costs 𝑝𝑖 penalty points. It is not required to buy integer amount of fuel, you
can buy non-integer amount if you like.

4. The participants are informed about the number of the final checkpoint 𝑓 (1 6 𝑓 6 𝑛,
𝑓 ̸= 𝑠). The goal of the participants is to reach the final checkpoint 𝑓 from the initial
checkpoint 𝑠 with as few penalty points as possible.

Pasha is in the dark on which checkpoints 𝑠 and 𝑓 will be chosen by the organizing committee, so
he needs to know the mean value of the number of penalty points needed. Being a true professional,
he always choses the route which needs the minimal number of penalty points. All possible variants
of 𝑠 and 𝑓 should be considered equiprobable.

Write a program that will help Pasha determine the mean value.

Input

The first line of the input data contains two integers 𝑛 and 𝑣 — the number of checkpoints and
gas tank capacity, respectively (2 6 𝑛 6 200, 1 6 𝑣 6 105).

Each of the next 𝑛 lines contains a checkpoint with three integers 𝑥𝑖, 𝑦𝑖 and 𝑝𝑖 — the coordinates
of the checkpoint and the number of penalty points for a liter of fuel at it, respectively
(−104 6 𝑥𝑖, 𝑦𝑖 6 104, 1 6 𝑝𝑖 6 106). No two checkpoints are the same.

It is guaranteed that the capacity of the gas tank is enough to reach any checkpoint from any
other checkpoint, possibly refuelling on the way.

Output

The only line of the output data must contain a single real number — the number of penalty points
required on average. The answer will be considered correct when its absolute or relative error is
less than 10−6.

Page 7 of 21

XIX All-Siberian Programming Contest named after I.V. Pottosin

Onsite tour, II day, Novosibirsk SU, November 18, 2018

Example

input.txt output.txt

5 3

0 0 3

0 2 2

1 1 5

3 1 2

2 2 4

6.634062043

3 100000

0 0 1000

1 1 1

2 0 1000

943.751850623645282

Example explanation

There are only 20 variants of the start and final checkpoints in the first example. In all but four
variants, the optimal route consists in buying the necessary volume of gas at the first checkpoint
and proceeding directly to the end point.

In the case of driving from (0, 2) to (3, 1) or back, it is impossible to take a direct drive because
of the insufficient tank capacity. The optimal variant is to fill the tank maximally at the starting
point and driving through the checkpoint (2, 2), adding some fuel there. The total penalty in this
case will be 2 · 3 + 4 · (

√
2− 1).

Similarly, in case of going from (0, 0) to (3, 1) and back, the optimal solution is to drive through
the checkpoint (1, 1) for a refill.

In the second example it is sometimes worth to drive through the intermediate checkpoint to buy
fuel there, even though gas tank is large enough to sustain a direct route.

Page 8 of 21

XIX All-Siberian Programming Contest named after I.V. Pottosin

Onsite tour, II day, Novosibirsk SU, November 18, 2018

Problem 7. Level check
Input file: input.txt

Output file: output.txt

Time limit: 6 seconds
Memory limit: 256 megabytes

Vasya still likes to play computer games, and he is still working as a game tester. Little has changed
since our last meeting: he has been brooding about learning to code, but hasn’t made any decisive
moves yet. As the result, he is still cramped into a tiny room, testing the same browser game.

A while ago, gameplay designers finally decided that levels needed nonlinear gameplay. Now the
base level map of the game is a set of 𝑁 passable cells in an endless rectangular grid. The player,
weapons and monsters are always located in the passable cells. In one game turn, the player can
move from his current cell to any passable cell adjacent to it. Two cells are considered adjacent if
they share a common side.

Unfortunately, for Vasya, this groundbreaking policy change is nothing but headache. He is
currently busy testing the first level of the game. The problem is, in the beginning of the game, the
player has no weapon, so any battle with a monster is doomed to end in a stupid pointless failure.
Being a game tester, Vasya must ensure that the player is guaranteed to find at least some weapon
before his first encounter with a monster. The assumed IQ of the target auditory is lurking near
rock bottom, as usual. Hence if there is even an infinitesimal chance to fail, the future players of
the game will do that, guaranteed.

Unfortunately, the designers take an unhealthy amount of perfectionism regarding the first level.
Even though the base map of the level has already been approved and fixed, every day, Vasya
keeps receiving a bunch of new variants of object layout for this level. Object layout defines which
cells of the level contain monsters, weapons, and the initial position of the player. For each object
layout, Vasya must determine whether it is prone to the above mentioned pointless failure or not.
Help Vasya: write a program which will quickly analyze the layouts, while Vasya is busy enjoying
the intricate gameplay of the second PoE. Mind that when a player moves to a cell with weapon,
the weapon is automatically taken, and when the player moves to a cell with a monster, the fight
is inevitable.

Input

The first line of the input file contains a single integer 𝑁 — the number of passable cells in the
base level map (1 ≤ 𝑁 ≤ 3 · 105). The following 𝑁 lines describe these cells: each line contains
two integers 𝑥 and 𝑦 — the cell coordinates (0 ≤ 𝑥, 𝑦 ≤ 106). It is guaranteed that all these cells
are different.

The next line contains a single integer 𝑇 — the number of object layouts to be analyzed
(1 ≤ 𝑇 ≤ 105). It is followed by 𝑇 blocks, with each block describing one object layout.

A block begins with a line containing two integers: 𝑀 — the number of monsters and 𝑊 — the
number of weapons (0 ≤ 𝑀,𝑊 ≤ 105). The next line contains the coordinates of the cell where
the player is initially located. The following𝑀 lines contain the coordinates of cells with monsters,
and finally, the last 𝑊 lines of the block provide the coordinates of cells containing weapons. For
each of these (𝑀 +𝑊 +1) cells two integers are provided: 𝑥 and 𝑦; it is guaranteed that all these
cells are passable and different.

The total number of monsters over all object layouts does not exceed 105. Similarly, the total

Page 9 of 21

XIX All-Siberian Programming Contest named after I.V. Pottosin

Onsite tour, II day, Novosibirsk SU, November 18, 2018

number of weapons over all object layouts does not exceed 105.

Output

For each object layout print an answer to the problem in a separate line. Answers must be printed
in the same order in which the object layouts are defined in the input file. If the player can fail,
print the word fail, otherwise print the word ok.

Example

input.txt output.txt

10

1 1

2 1

3 1

4 1

5 1

6 1

4 2

3 2

3 3

3 4

3

1 0

1 1

6 1

2 1

1 1

5 1

3 4

3 1

2 1

1 1

3 3

6 1

4 1

fail

ok

fail

Illustration

Three object layouts from the example (p — player, m — monster, w — weapon):

x

y

p m
x

y

p w m
x

y

p w m

m
m

Page 10 of 21

XIX All-Siberian Programming Contest named after I.V. Pottosin

Onsite tour, II day, Novosibirsk SU, November 18, 2018

Problem 8. Intersection Graph
Input file: input.txt

Output file: output.txt

Time limit: 3 seconds
Memory limit: 256 megabytes

Innokentiy is still very fond of writing geometrical algorithms, but he has switched from triangular
meshes to solid bodies. He wants to write an algorithm for building an intersection graph of two
bodies, necessary for running, for instance, a boolean operation with these bodies. Note that only
the boundaries of the bodies are considered during the building of the graph, and the interior
volumes of the bodies are not considered here. Innokentiy knows that building an intersection
graph of two arbitrary bodies is a challenging task in the CAD area. He has decided to take it
easy: first, he is going to learn to build an intersection graph of two boxes, 𝐴 and 𝐵.

A box (usually called axis-aligned box) is a rectangular parallelepiped with sides parallel to the
coordinate axes. The boundary of the box consists of topological elements of three types:

∙ V — a vertex, which is, geometrically speaking, a point;
∙ E — an edge, which is a line segment;
∙ F — a face, which is a rectangle;

Each box has 8 vertices, 12 edges, and 6 faces.

For the purpose of this problem, let edges and faces be represented by the corresponding point
sets without boundary points. Hence an edge is a line segment which does not contain its
end points, and a face is a rectangle which does not contain its corners and sides. Based on this
definition, the topological elements have no common points and together form precisely the whole
boundary of the box.

An intersection graph consists of interrelated intersection elements defined in the following
manner. Consider all possible pairs: a topological element 𝑢 of the box 𝐴 and a topological element
𝑣 of the box 𝐵 (a total of 676 pairs). For each such pair (𝑢, 𝑣), find their intersection as intersection
of two sets. If this set intersection is non-empty, then it defines the intersection element, which
can be of one of the three following types:

∙ p — point: a single point;
∙ c — curve: a set of points forming a line segment;
∙ s — surface: a set of points forming a rectangle;

The intersection graph consists of all intersection elements acquired in this manner.

The intersection elements are interconnected. For each intersection curve, two intersection points
located on its ends are saved. For each intersection point, a list of intersection curves incident to
that point is saved. An intersection curve is considered incident to its end points and not incident
to any other intersection points. For an intersection surface, the set of intersection curves located
on its boundary (and thus bounding it) is saved.

Input

The first line of the input file contains a single integer 𝑇 — the number of test cases (1 ≤ 𝑇 ≤ 5 000).
It is followed by 𝑇 blocks.

Each block consists of two lines: the first line defines the box 𝐴, while the second line defines the
box 𝐵. A box is described by six integers 𝑥1, 𝑦1, 𝑧1, 𝑥2, 𝑦2, 𝑧2, which do not exceed 103 by absolute

Page 11 of 21

ledas

XIX All-Siberian Programming Contest named after I.V. Pottosin

Onsite tour, II day, Novosibirsk SU, November 18, 2018

value. The numbers 𝑥1, 𝑦1, 𝑧1 define the coordinates of the «minimal» vertex, and the numbers
𝑥2, 𝑦2, 𝑧2 define the coordinates of the «maximal» vertex (𝑥1 < 𝑥2, 𝑦1 < 𝑦2, 𝑧1 < 𝑧2).

Output

The output file must contain 𝑇 intersection graphs — the answers to the test cases from the
input file. After each intersection graph, print === (three equality symbols) in a separate line. All
numbers in the output file must be integers.

The description of an intersection graph contains a lot of links between intersection elements
and topological elements. For the purpose of describing these links, you must assign numbers (or
indices) to all elements. All topological elements of the box 𝐴 must be numbered by integers from
1 to 26 in any order. Similarly, all topological elements of the box 𝐵 must be numbered by integers
from 1 to 26 in any order. Furthermore, all intersection elements must be numbered from 1 to 𝐾
in the order of their appearance in the output file, where 𝐾 is the total number of intersection
elements.

The first line of intersection graph description must contain three numbers: 𝑃 — the number of
intersection points, 𝐶 — the number of intersection curves, and 𝑆 — the number of intersection
surfaces (naturally, 𝑃 + 𝐶 + 𝑆 = 𝐾). After that the intersection elements must be described in
the following order: first 𝑃 intersection points, then 𝐶 intersection curves, and last 𝑆 intersection
surfaces (one intersection element per line).

The description of each intersection element must begin with its index, follower by a three-letter
code devised according to the rule:

1. The first letter — type of intersection element: point p, curve c or surface s.
2. The second letter — type of topological element 𝑢: vertex V, edge E or face F.
3. The third letter — type of topological element 𝑣.

Here 𝑢 and 𝑣 are topological elements from the boxes 𝐴 and 𝐵, respectively, from which the
intersection element in question was generated. Next, print two integers: the indices of these
topological elements 𝑢 and 𝑣 in that order. Finally, depending on the type of the intersection
element, print additional information.

For an intersection point, additionally provide: three coordinates of its location, the number of
incident intersection curves, and the list of indices of these curves. The indices of incident curves
may be printed in any order.

For an intersection curve, additionally provide the indices of the two intersection points located
on its ends. These two numbers may be printed in any order.

For an intersection surface, additionally provide: the number of intersection curves on its boundary
and the list of their indices. The indices of these bounding curves may be printed in any order.

It is not necessary to separate the numbers in the file strictly by a single space: you can use several
spaces in a row, like in the example below.

Page 12 of 21

XIX All-Siberian Programming Contest named after I.V. Pottosin

Onsite tour, II day, Novosibirsk SU, November 18, 2018

Example

input.txt output.txt

2

0 0 0 5 4 3

2 3 1 7 6 5

0 2 6 10 8 9

2 4 6 10 10 10

6 6 0

1 pFE 14 2 5 3 1 2 7 8

2 pFE 16 4 2 4 1 2 9 10

3 pEF 17 5 5 4 1 2 7 9

4 pFE 22 10 2 3 3 2 11 12

5 pEF 23 11 5 3 3 2 8 11

6 pEF 25 13 2 4 3 2 10 12

7 cFF 14 5 1 3

8 cFF 14 11 1 5

9 cFF 16 5 2 3

10 cFF 16 13 2 6

11 cFF 22 11 4 5

12 cFF 22 13 4 6

===

8 10 2

1 pEV 6 3 10 4 6 3 9 10 13

2 pVE 9 6 10 8 6 3 9 12 14

3 pFV 5 1 2 4 6 2 10 11

4 pEE 8 4 2 8 6 3 11 12 16

5 pEE 23 12 10 4 9 3 13 15 17

6 pVF 26 14 10 8 9 2 14 15

7 pFE 22 10 2 4 9 2 17 18

8 pEF 25 13 2 8 9 2 16 18

9 cEE 6 6 1 2

10 cFE 5 2 1 3

11 cFE 5 4 3 4

12 cEF 8 5 2 4

13 cFE 14 12 1 5

14 cEF 17 14 2 6

15 cEF 23 14 5 6

16 cFF 16 13 4 8

17 cFF 22 11 5 7

18 cFF 22 13 7 8

19 sFF 5 5 4 9 10 11 12

20 sFF 14 14 4 9 13 14 15

===

Page 13 of 21

XIX All-Siberian Programming Contest named after I.V. Pottosin

Onsite tour, II day, Novosibirsk SU, November 18, 2018

Illustration
In the first test case, the boxes poke though each other with a corner. The intersection graph is
shown with a bold line. It consists of six points and six curves, obscured to the observer by the
box 𝐵. The indices of the intersection elements are labeled.

Y

Z

X

2
1 3

5

4 6

8

11
12

10

9
7

In the second test case, the boxes share the lower and the front faces, resulting in the intersection
surfaces 19 and 20, respectively (they are not shown in the picture). All remaining elements are
shown in bold, and their indices are provided.

Y

Z

X

2

1

3

5 4

6

8

11

12

10

9

7

17

16

15

14

13

18

Page 14 of 21

XIX All-Siberian Programming Contest named after I.V. Pottosin

Onsite tour, II day, Novosibirsk SU, November 18, 2018

Problem 9. In search of the chair
Input file: input.txt

Output file: output.txt

Time limit: 5 seconds
Memory limit: 256 megabytes

Kisa and Osya, in their search for the last, twelfth chair, found themselves on the planet Plop.
They know their precise coordinates and the coordinates of the chair, and they want to get that
chair, at last! But alas — they can move anywhere on the planet surface, with the exception of
several forbidden circular areas — anyone who sets foot there is locked in a cage and forced to
sing the “Mommy, what do I do now” song. This may seem like a minor nuisance first, however,
our heroes will not tolerate any delays — and their singing may impress the Master, and he could
end up keeping them locked up forever... For this reason, they need to avoid these areas. Your
task is to help them find the shortest path from their current location to the chair, avoiding any
forbidden areas.

Input

The first line of the input file contains two numbers: 𝑅 — the planet radius(1000 ≤ 𝑅 ≤ 10000)
and 𝑁 — the number of the forbidden round areas (0 ≤ 𝑁 ≤ 20). Next come 𝑁 lines, each
containing three numbers: 𝜑𝑖, 𝜓𝑖 — the latitude and longitude of the area center, respectively, and
𝑟𝑖 — its radius (1 ≤ 𝑟𝑖 ≤ 𝑅/2). The last two lines contain the coordinates 𝜑𝑠, 𝜓𝑠 and 𝜑𝑡, 𝜓𝑡 — the
latitude and longitude of the starting point and the finish point, respectively.

All numbers in the input data are integers. Latitudes and longitudes are set in degrees. The
latitude lies in the range of −90 degrees to 90 degrees, and the longitude lies in the range from
−180 to 180 degrees.

A forbidden area with a radius of 𝑟 contains all points reachable from the area center via a path
shorter than 𝑟 along planet surface.

It is guaranteed that the surface distance from the starting point to any point in any forbidden
area, as well as to the finish point, is less than or equals 3

2
𝑅. Forbidden areas can overlap. Centers

of forbidden areas are all different. It is guaranteed that the starting and finish point do not fall
into any forbidden areas; moreover, the minimal distance from these points to any forbidden area
is at least 𝑅/1000. It is also guaranteed that changing any feature of any forbidden area by no
more than 10−3 will not affect the mutual position of the areas (i.e. if they overlapped, they will
stay overlapped, and vice versa).

Output

In the output file, print a single real number — the length of the shortest path. The absolute or
relative error of the answer must not be greater than 10−8. If there is no such path, print -1.

Page 15 of 21

XIX All-Siberian Programming Contest named after I.V. Pottosin

Onsite tour, II day, Novosibirsk SU, November 18, 2018

Example

input.txt output.txt

1000 2

5 5 100

-5 -5 100

-20 0

20 0

700.830526321397656

1000 7

11 49 253

30 75 253

52 59 158

62 48 157

37 14 348

29 45 107

53 37 79

-5 45

75 45

1715.42276690714903

Illustration

Locations of the forbidden areas and the optimal paths on the planet surface for the first and the
second tests respectively are shown below.

Page 16 of 21

XIX All-Siberian Programming Contest named after I.V. Pottosin

Onsite tour, II day, Novosibirsk SU, November 18, 2018

Problem 10. Subsequences
Input file: input.txt

Output file: output.txt

Time limit: 5 seconds
8 seconds (for Java)

Memory limit: 512 megabytes

In the Datastring Research Corporation, the string 𝑠 is called good, if the number of its various
subsequences is even.

The string 𝑡 is called a subsequence of the string 𝑠, if it can be derived from 𝑠 by crossing out a
certain set of symbols. The string 𝑠 and the empty string are also considered to be subsequences of
𝑠. In a string of the length 𝑙, there is a total of 2𝑙 subsequences, however, some of them may coincide.
For instance, a three-letter string 𝑎𝑏𝑏 has only 6 distinct subsequences: empty, 𝑎, 𝑏, 𝑎𝑏, 𝑏𝑏, 𝑎𝑏𝑏.

The string 𝑠 was lying on the String Researcher’s desk, and he was trying to figure out whether
it was a good one. He did realize that counting the number of distinct subsequences is a tedious
task, so, instead of tackling the task right away, he went on a coffee break — with donuts.

Upon his return, the String Researcher discovered that someone had made an 𝑁 − 1 cut in the
string 𝑠, and it fell apart into 𝑁 non-empty substrings 𝑠1, 𝑠2, . . . , 𝑠𝑁 scattered all over the table.
And he absolutely does not remember the initial string 𝑠. However, he is curious about how many
permutations 𝑝 = (𝑝1, . . . , 𝑝𝑁) exist, such that the recovered string 𝑠𝑝1𝑠𝑝2 . . . 𝑠𝑝𝑁 is good. Note that
there is a total of 𝑁 ! permutations (the factorial of 𝑁), and all these permutations are considered
different, even if some of the substrings 𝑠𝑖 match.

Input

The first line of the output file must contain a single integer 𝑁 — the number of substrings
(2 ≤ 𝑁 ≤ 20). The 𝑖th of the following 𝑁 lines contains the substring 𝑠𝑖.

All of the 𝑠𝑖 strings are non-empty and consist exclusively of lower-case Latin letters. It is
guaranteed that the sum of lengths of all the lines 𝑠𝑖 is equal to or less than 105.

Output

In the only line of the output file, print a single integer number: the number of permutations such
that the concatenation of the strings 𝑠𝑖 in the order of permuation is a good one.

Example

input.txt output.txt

3

a

a

baa

4

Example explanation

The string 𝑎+ 𝑎+ 𝑏𝑎𝑎 has 14 subsequences, the string 𝑎+ 𝑏𝑎𝑎+ 𝑎 has 13 subsequences, and the
string 𝑏𝑎𝑎 + 𝑎 + 𝑎 has 10 subsequences. Each of these lines can be obtained with the aid of only
two permutations, since there are two occurrences of the substring 𝑎.

Page 17 of 21

XIX All-Siberian Programming Contest named after I.V. Pottosin

Onsite tour, II day, Novosibirsk SU, November 18, 2018

Problem 11. Office
Input file: input.txt

Output file: output.txt

Time limit: 2 seconds
Memory limit: 256 megabytes

There are several rooms in the office of the company N*, located along a long corridor. There are
several workspaces in each room. There are lots or employees in N*, and every now and then they
have to go either to one end of the corridor, or to its another end, running errands: that’s where
the most important places are, production-wise.

At some point, the CEO’s decided it was time to optimize the arrangement and hired consultants
to figure out the best way to place the employees in the workspace. First, the consultants measured
the length of the corridor, which they found to be equal to 𝐿, and suggested the following criterion:
the placement is considered optimal if the total distance the employees travel along the coridor in
one day is minimal. If an employee works in a room located at a distance 𝑝 from the beginning
of the corridor, then, having walked to the beginning of the corridor an back, he has covered the
distance 2𝑝, and a single run to the end of the corridor and back equals 2(𝐿− 𝑝). Further analysis
revealed the number of runs to the beginning and to the end of the corridor per day for each
employee.

Now, when all data are available, you must calculate the optimal placement of all employees.
Naturally, the number of employees who can be placed in each room is limited by its workplace
capacity.

Input

The first line of the input file contains three integers: 𝑁 — the number of rooms(1 ≤ 𝑁 ≤ 105),
𝑀 — the number of employees (1 ≤𝑀 ≤ 105), 𝐿 — the length of the corridor (2 ≤ 𝐿 ≤ 108).

Each of the following 𝑁 lines contains two integers describing the 𝑖th room: 𝑃𝑖 — the distance
from the beginning of the corridor to the room (0 < 𝑃𝑖 < 𝐿), 𝐶𝑖 — the workplace capacity of the
room (1 ≤ 𝐶𝑖 ≤ 105).

Each of the following 𝑀 lines contains two integers 𝐴𝑖 and 𝐵𝑖, describing the 𝑖th employee —
the number of times per day he or she runs from the room to the beginning and the end of the
corridor, respectively (0 ≤ 𝐴𝑖, 𝐵𝑖 ≤ 105).

Total workplace number does not exceed 106. It is guaranteed that there is enough workplaces for
all employees.

Output

In the first line, print an integer — the total distance the employees run per day in case of the
optimal placement. The following 𝑁 lines must contain information about such placement. In the
𝑖th of these lines, first print an integer 𝑆𝑖 — the number of employees who will work in the 𝑖th
room. Next, in the same line print 𝑆𝑖 integers — the numbers of these employees in arbitrary order.
If several solutions are possible, print any one of them. Employees are numbered in the order of
their appearance in the input file, beginning from one.

Page 18 of 21

XIX All-Siberian Programming Contest named after I.V. Pottosin

Onsite tour, II day, Novosibirsk SU, November 18, 2018

Example

input.txt output.txt

4 9 5

1 2

2 3

3 4

4 2

3 0

3 1

3 1

0 2

1 2

1 2

1 1

2 2

3 3

128

2 1 3

2 2 9

3 6 7 8

2 4 5

Page 19 of 21

XIX All-Siberian Programming Contest named after I.V. Pottosin

Onsite tour, II day, Novosibirsk SU, November 18, 2018

Problem 12. Recursive circuit
Input file: input.txt

Output file: output.txt

Time limit: 3 seconds
Memory limit: 256 megabytes

In the layout of a recursive microcircuit, there is a total of 𝑁 contact points, with some pairs of
contacts connected directly with conductive paths. In addition, there is a total of 𝑆 sub-circuits
within the circuit, each being an exact copy of the circuit in question.

There are three types of contacts in the circuit layout:

1. Input contacts of the circuit (𝐾 contacts). These are the only contacts connecting the circuit
to external conductive paths.

2. Input contacts of the nested sub-circuits (𝑆 ·𝐾 contacts).
3. Auxillary contacts.

All these contacts can be connected with each other by conductive paths without any restrictions.

Signals travel along conductive paths. When a signal reaches a contact, it can follow any of the
paths connected to this contact. If an external signal reaches an input contact of the sub-circuit, it
can enter the sub-circuit and travel further along its paths. If an internal signal reaches an input
contact of the sub-circuit, it can leave the sub-circuit and travel outside the circuit (if there are
paths outside, and if the external circuit is itself a sub-circuit of another circuit).

Consider the most external circuit, with nothing else on the outside. Determine whether two
specified input contacts of the circuit are connected with paths. The contacts are connected if a
signal can reach one contact from the other, possibly entering a number of various sub-circuits a
finite number of times.

Apart from the fact of being connected, find out how deep the signal must go into the sub-circuits to
reach one contact from the other. The external circuit has a nesting depth of 0; for its sub-circuits,
the nesting depth is 1, and their sub-circuits, in turn, have a nesting depth of 2, etc. For an arbitrary
path of the signal, the critical depth can be defined, which is the maximum nesting level among
all circuits, whose conductive paths are travelled by the signal.

Determine the minimal value of the critical depth for the path between two given input contacts
of the external circuit.

Input

The first line contains four integers: 𝑁 — the number of contacts in the circuit layout, 𝐾 — the
number of input contacts of the circuit, 𝑆 — the number of sub-circuits in the circuit, 𝑀 — the
number of conductive paths in the circuit layout (1 ≤ 𝐾 ≤ 100 000, 0 ≤ 𝑆 ≤ 1 000,
𝐾(𝑆 + 1) ≤ 𝑁 ≤ 100 000, 0 ≤𝑀 ≤ 100 000).

The following 𝑀 lines define the conductive paths in the circuit layout. Each path is defined by
two integers 𝑎 and 𝑏 — the numbers of contacts in the layout directly connected by the path
(1 ≤ 𝑎 ̸= 𝑏 ≤ 𝑁).

The contacts in the circuit layout are numbered in numerical order from 1 to 𝑁 . The input contacts
are numbered from 1 to 𝐾. The input contacts of the 𝑡th sub-circuit are numbered from 𝑡𝐾+1 to
𝑡𝐾 +𝐾 (for 1 ≤ 𝑡 ≤ 𝑆). The 𝑗th input contact on the 𝑡th circuit layout is the (𝑡𝐾 + 𝑗)th contact
on the external circuit layout. The remaining contacts, if such exist, are auxillary.

Page 20 of 21

XIX All-Siberian Programming Contest named after I.V. Pottosin

Onsite tour, II day, Novosibirsk SU, November 18, 2018

The following line contains an integer 𝑄 — the number of queries (1 ≤ 𝑄 ≤ 100 000). Each of the
remaining 𝑄 lines contain one query that needs an answer. Each query is defined by two integers
𝑢 and 𝑣 — the numbers of the input contacts of the external circuit (1 ≤ 𝑢 ̸= 𝑣 ≤ 𝐾).

Output

In the output file, print 𝑄 integers, one number per line. Every 𝑟th number must be an answer
to the 𝑟th query: the nesting depth necessary to get from one of the input contacts to another. If
there is no way to reach the other input contact, print the number −1 instead of the depth value.

Example

input.txt output.txt

16 5 2 7

1 16

2 16

6 16

7 11

3 12

4 13

5 15

4

1 2

2 3

3 4

4 5

0

1

2

-1

Illustration

Page 21 of 21

