
XXII Open All-Siberian Programming Contest named after I.V. Pottosin
Final tour, II day, Novosibirsk SU, November 7, 2021

Problem 1. Polesov and work
Input file: input.txt
Output file: output.txt
Time limit: 3 seconds
Memory limit: 256 megabytes

Viktor Mikhailovich Polesov, being a true representative of the intelligentsia, is intelligent and
fast-thinking. He has recently learned that work of a force is the dot product of the force vector
by displacement vector. Naturally, he wants to maximize the work, so that nothing goes to waste.
All he has to do is choose where to move.

It is possible to move from the point (0, 0) to any integer point in the circle 𝑥2+𝑦2 ≤ 𝑅2. The force
vector is known — it is the same everywhere and has the coordinates (𝑎, 𝑏). Find the maximum
work that Polesov is so curious about.

Input
The first line of the input file contains a single integer 𝑇 — the number of tests (1 ≤ 𝑇 ≤ 1 000).
It is followed by 𝑇 lines, each containing three integers 𝑎, 𝑏 — force vector coordinates, and 𝑅 —
the radius of the circle (−109 ≤ 𝑎, 𝑏 ≤ 109, 1 ≤ 𝑅 ≤ 109).

Output
For each test, print a single integer — the maximum work.

Example
input.txt output.txt

3
10 -10 2
2 3 3
5 1 3

20
10
15

Example explanation
In the first test, the circle with the center at the origin of coordinates and a radius of 2 contains 13
integer points. For the points (2, 0), (1,−1), (0,−2), the dot product by the force vector (10,−10)
is maximal. For instance, 10× 1 + (−10)× (−1) = 20.

Page 1 of 17

XXII Open All-Siberian Programming Contest named after I.V. Pottosin
Final tour, II day, Novosibirsk SU, November 7, 2021

Problem 2. Orienteering
Input file: input.txt
Output file: output.txt
Time limit: 3 seconds
Memory limit: 256 megabytes

Khodislav has taken up orienteering and is participating in a contest. The field is an endless plane
without obstacles, and he can move at the same speed in all directions. There are 𝑁 checkpoints
in the field, which every participant must visit in the ascending order of their numbers. The
check-in system is contactless — each checkpoint has a base station that automatically checks in
any participant in a range less than or equal to 𝑅. It is guaranteed that checkpoint coverage areas
do not overlap, but they can touch each other.

A participant starts at any point of the first checkpoint coverage and finishes at the moment of
checking in at the last checkpoint. Participants are allowed to enter other checkpoint coverage
areas on their way to the necessary checkpoint, but in this case, they are not checked in there.

Khodislav is feeling lucky and believes he will be able to cover the distance optimally. Help him
calculate the distance he will have to cover.

Input
The first line of the input file contains two integers: 𝑁 — the number of checkpoints (2 ≤ 𝑁 ≤ 100)
and 𝑅 — the check-in radius (1 ≤ 𝑅 ≤ 109).

Next come 𝑁 lines describing the checkpoints in the required check-in order. Each line is a pair
of integers 𝑥𝑖, 𝑦𝑖 with the coordinates (−109 ≤ 𝑥𝑖, 𝑦𝑖 ≤ 109).

Output
Print one real number — total distance passed if the route is optimal.

The relative or absolute error must not exceed 0.01. This means that if the optimal answer
equals 𝑋, your answer must differ from 𝑋 by no more than 1

100
max(𝑋, 1).

Examples
input.txt output.txt

3 3
0 -3
0 100
0 50

141.0

Example explanation
Khodislav starts at (0, 0), checks in at the second checkpoint at (0, 97), turns and checks in at the
third checkpoint at (0, 53). The total distance covered is 97 + 44 = 141.

Page 2 of 17

XXII Open All-Siberian Programming Contest named after I.V. Pottosin
Final tour, II day, Novosibirsk SU, November 7, 2021

Problem 3. Dice
Input file: input.txt
Output file: output.txt
Time limit: 1 second
Memory limit: 256 megabytes

Khodislav is playing a tabletop role-playing game. He has finally chosen his weapons to deal with
a monster and casts the crushing strike. To do this, he rolls dice, calculates the sum of numbers
on their faces, and says it aloud to the game master.

Rolling a group of identical dice is characterized by three numbers 𝑛, 𝑓 , and 𝑚, where 𝑛 is the
number of the dice, 𝑓 is the number of faces on each die, and 𝑚 is the modifier. The faces carry
all numbers from 1 through 𝑓 , and each and any face can be rolled; all rolls are independent. For
instance, if 𝑛 = 3, 𝑓 = 8, 𝑚 = 5, to define the sum, the player must roll three eight-faced dice,
sum up the results, and add five: this is usually written as 3𝑑8 + 5.

The game master wants to check if Khodislav could get the sum he has reported after rolling the
dice.

Input
The first line of the input file contains a single integer 𝐵 — the number of strikes (1 ≤ 𝐵 ≤ 105)
cast by Khodislav. The following lines describe the strikes, one per line. First comes an integer
𝑆 — the sum reported by Khodislav. It is followed by three integers: 𝑛, 𝑓 and 𝑚 describing the
group of dice (1 ≤ 𝑆 ≤ 300, 1 ≤ 𝑛 ≤ 10, 2 ≤ 𝑓 ≤ 20, 0 ≤ 𝑚 ≤ 10).

Output
For each strike in a separate line, in the same order as in the input file, print YES, if the sum was
achievable, and NO otherwise.

Examples
input.txt output.txt

5
3 1 6 0
1 1 8 1
16 1 12 3
1 2 4 0
42 3 20 1

YES
NO
NO
NO
YES

Page 3 of 17

XXII Open All-Siberian Programming Contest named after I.V. Pottosin
Final tour, II day, Novosibirsk SU, November 7, 2021

Problem 4. Numeral systems
Input file: input.txt
Output file: output.txt
Time limit: 3 seconds
Memory limit: 256 megabytes

Khodislav has learned that apart from the decimal numeral system, there exist other systems,
such as the hexadecimal system. He is curious about the connection of the values of the same
notation in these two systems. For instance, can a sequence of 𝐾 digits have its hexadecimal value
divisible by its decimal value? Will anything change if we subtract a specified number 𝐷 from the
decimal value of this notation?

A notation is a sequence of digits. Digits from 0 through 9 can be used in a notation: they belong
both to the decimal and to the hexadecimal systems. A notation of a number cannot begin with the
digit 0. The decimal value of a notation is the number resulting from interpreting the notation as
a decimal number. The hexadecimal value of a notation is the number resulting from interpreting
the notation as a hexadecimal number.

Input
The first line contains an integer 𝑇 — the number of tests in the file (1 ≤ 𝑇 ≤ 100). It is followed
by 𝑇 tests, one per line.

For each test, two integers are provided: 𝐾 — the number of digits in the notation and 𝐷 — the
number to be subtracted from the decimal value (2 ≤ 𝐾 ≤ 15, 0 ≤ 𝐷 ≤ 106).

Output
For each test, find all required notations. Notations are sequences of 𝐾 digits without leading
zeroes, with the value of 𝑋 in the decimal system and the value of 𝑌 in the hexadecimal system,
for which 𝑋 > 𝐷 and 𝑌 is divisible by (𝑋 −𝐷) without remainder.

The answers to each test are printed in a single line. First, print the number of the found notations,
followed by all found notations in the ascending order, separated by spaces.

Example
input.txt output.txt

4
5 6
2 0
2 5
2 21

3 12510 24990 37950
0
2 16 22
4 22 24 34 96

Example explanation
In the first test, the notation 37950 means 𝑋 = 37950 in the decimal system and 𝑌 = 227664
in the hexadecimal system. We can see that 𝑌 = 227664 is divisible by 𝑋 −𝐷 = 37944 without
remainder. Identically, for the notation 24990, 𝑌 = 149904 is divisible by 𝑋 − 𝐷 = 24984, and
for the notation 12510, 𝑌 = 75024 is divisible by 𝑋 −𝐷 = 12504.

Page 4 of 17

XXII Open All-Siberian Programming Contest named after I.V. Pottosin
Final tour, II day, Novosibirsk SU, November 7, 2021

Problem 5. Hockey
Input file: input.txt
Output file: output.txt
Time limit: 1 second
Memory limit: 256 megabytes

Rules described in this problem differ from the conventional hockey rules.

A hockey match lasts 60 minutes, with two teams trying to score as many goals as possible. A
hockey team consists of five field players and a goalkeeper.

Penalties are an important part of hockey. A field player can be given a penalty: in this case, the
offending player leaves the ice for a period of time which depends on the violation. As the result,
the number of players on the ice temporarily decreases for the team the offending player belongs
to. There are two types of penalties in hockey: major and minor. A major penalty means the
player leaves the ice for five minutes; with minor penalty, it is two minutes. When penalty time
runs out, the player returns to the ice.

A minor penalty can be ended prematurely. A team is said to be playing short-handed when it
has less players on the ice than the other team. If a team is playing short-handed and opponent
scores a goal, then one of its players with minor penalty returns to the ice with his penalty expired
ahead of time. If the team has several players with minor penalty, only the player who got the
penalty first returns to the ice. If there are no players with minor penalties in the team, no one
returns ahead of time.

Penalties during the game mean that the teams can play in various formats regarding the number
of field players on the ice. We will denote the game format by AxB, meaning the first team currently
has A field players on the ice, and the second team has B. For instance, in the beginning of the
game each team has five players on the ice, and this format is denoted as 5x5. If the first team
currently has two players with penalty, and the second team has one, the format is denoted as 3x4.

You are given a game protocol, registering the time of all penalties and goals. Calculate which
formats happened during the game and for how long each format was played.

Input
The first line of the input file contains an integer 𝑁 — the number of events in the match
(0 ≤ 𝑁 ≤ 1 000).

The following 𝑁 lines describe the events of the match, one per line. Events are described in the
following format:

mm:ss.d team type

Where mm:ss.d — time of event with the precision of tenths of a second (0 ≤ mm ≤ 59, 0 ≤ ss ≤ 59,
0 ≤ d ≤ 9), team — team number (either 1 or 2), type — event type:

∙ goal — team scores a goal;
∙ minor — team player receives minor penalty;
∙ major — team player receives major penalty.

It is guaranteed that events of the type goal have non-zero decimal of a second, i.e. d ̸= 0, and
events of the type minor and major always have zero decimals of a second, i.e. d = 0.

Page 5 of 17

XXII Open All-Siberian Programming Contest named after I.V. Pottosin
Final tour, II day, Novosibirsk SU, November 7, 2021

Events are listed chronologically, i.e. they are arranged in the order of non-reduction of event
times. It is guaranteed that at any moment of time each team has no more than 5 players.

Output
For each format of the game in which the teams have played non-zero time, print the format
denotation and the time spent by the teams in this format in a separate line, separated by a space
character. The format of time must be exactly the same as the format used in the input data.
Lines can be printed in arbitrary order.

Example
input.txt output.txt

10
06:41.0 1 minor
07:20.4 2 goal
22:22.0 2 minor
22:32.0 1 minor
23:00.1 1 goal
23:12.0 2 minor
23:59.9 1 goal
41:02.0 1 major
41:04.5 2 goal
59:00.0 1 minor

4x3 00:47.9
4x4 01:12.1
4x5 06:39.4
5x4 00:50.0
5x5 50:30.6

Example explanation
The game from the example had the following intervals:

∙ [00:00.0; 06:41.0) — until the first penalty, the game went in the initial format 5x5;
∙ [06:41.0; 07:20.4) — after a penalty, the teams were playing in the format 4x5 until the

first team lost a goal while playing short-handed, and the player removed for a minor penalty
returned to the ice;

∙ [07:20.4; 22:22.0) — the teams were playing in full numbers 5x5 until a penalty;
∙ [22:22.0; 22:32.0) — until the next penalty, the teams were playing in the format 5x4;
∙ [22:32.0; 23:00.1) — until a goal was scored, the teams were playing in the format 4x4,

however, no players returned to the ice after the goal, because it was scored with equally-sized
teams;

∙ [23:00.1; 23:12.0) — the teams continued playing in the format 4x4 until another penalty;
∙ [23:12.0; 23:59.9) — after that, the teams were playing in the format 4x3 until a goal

was scored, and the second team player who had been penalized at 22:22.0 returned to the
ice;

∙ [23:59.9; 24:32.0) — the teams were playing 4x4 until the first team player’s penalty ran
out;

∙ [24:32.0; 25:12.0) — the teams were playing in the 5x4 format until the second team
player’s penalty ran out;

∙ [25:12.0; 41:02.0) — the teams were playing in the full format 5x5 until a major penalty;
∙ [41:02.0; 41:04.5) — before the goal, the teams played in the format 4x5, but because

a player of the team that lost a goal had a major penalty, that player does not leave the
penalty box;

Page 6 of 17

XXII Open All-Siberian Programming Contest named after I.V. Pottosin
Final tour, II day, Novosibirsk SU, November 7, 2021

∙ [41:04.5; 46:02.0) — the teams continued playing as 4x5, until the first player’s penalty
ran out;

∙ [46:02.0; 59:00.0) — before the penalty, the teams were playing with all players 5x5;
∙ [59:00.0; 60:00.0) — teams ending the game in the format 4x5.

Page 7 of 17

XXII Open All-Siberian Programming Contest named after I.V. Pottosin
Final tour, II day, Novosibirsk SU, November 7, 2021

Problem 6. Days of the week
Input file: input.txt
Output file: output.txt
Time limit: 1 second
Memory limit: 256 megabytes

The Architect has created a multiverse with 𝑀 universes. In each universe, the day of the week
has been set individually. The Architect also has 𝑁 buttons. Each button is connected to a certain
set of universes. Pressing a button shifts all of its connected universes one day forward.

The Architect is curious: is there such a configuration of weekdays in the universes which is
unachievable by any sequence of pressing buttons? Help the Architect solve this problem.

All universes use the Earth week: Monday, Tuesday, Wednesday, Thursday, Friday, Saturday,
Sunday. When shifting the day of the week forward: Monday changes to Tuesday, Tuesday to
Wednesday, etc, and Sunday changes to Monday.

The Architect can press buttons any number of times and in any order. When a button is pressed,
all its connected universes change instantly and simultaneously.

Input
The first line contains the integer 𝑇 — the number of tests in the input file (1 ≤ 𝑇 ≤ 500). It is
followed by the tests.

Each test begins with a line containting two integers: 𝑁 and 𝑀 — the number of buttons and the
number of universes, respectively (1 ≤ 𝑁,𝑀 ≤ 500).

The second line of the test contains the initial configuration: which day of the week has been
initially set in each universe. The universes are numbered from 1 through 𝑀 : days of the week in
the universes in the configuration are written in the same order.

This is followed by descriptions of buttons. For each button, a separate line defines which universes
it is connected to, in the following format: the first number 𝐾 defines how many universes are
connected, and the following 𝐾 numbers denote the numbers of these universes (0 ≤ 𝐾 ≤ 𝑀). It
is guaranteed that the specified universe numbers are different for each button.

It is guaranteed that the total number of buttons over all tests does not exceed 500, and the total
number of universes over all tests also does not exceed 500.

Output
For each test, print an answer in a separate line.

If all 7𝑀 possible configurations of days of the week are obtainable, print the word NO as the
answer. Otherwise print YES, followed by any unachievable configuration, separated by a space
symbol.

Page 8 of 17

XXII Open All-Siberian Programming Contest named after I.V. Pottosin
Final tour, II day, Novosibirsk SU, November 7, 2021

Examples
input.txt output.txt

3
3 3
Monday Saturday Thursday
1 1
1 2
1 3
3 3
Friday Thursday Thursday
1 3
1 3
1 3
4 3
Sunday Sunday Monday
2 1 3
3 1 2 3
0
1 3

NO
YES Saturday Thursday Thursday
NO

Page 9 of 17

XXII Open All-Siberian Programming Contest named after I.V. Pottosin
Final tour, II day, Novosibirsk SU, November 7, 2021

Problem 7. Balls
Input file: input.txt
Output file: output.txt
Time limit: 2 seconds
Memory limit: 256 megabytes

Alice and Bob are playing a game. They’ve got 𝐵 blue and 𝑅 red balls laid out in front of them.
Alice has the first move, and after that, players alternate moves. Alice picks a single random ball
and removes it. Bob removes a single red ball.

Alice chooses her balls randomly with equal probability regardless of their color. It does not matter
which red ball Bob removes.

The game ends when one of the two outcomes occurs:

∙ there are no more blue balls — Alice wins;
∙ there are strictly more blue balls than there are red balls — Bob wins.

Alice and Bob would like a balance of outcomes, and are curious as for what number of blue
balls is necessary for a game of 𝐶 = 𝐵 + 𝑅 balls for the probability of Alice winning ℎ to be as
close to 50% as possible. In other words, they want to minimize the value |ℎ− 0.5|.

Input
The first line of the input file contains a single integer 𝐺 — the number of games Alice and Bob
are going to play (1 ≤ 𝐺 ≤ 105).

The following lines define the number of balls 𝐶 in each game (2 ≤ 𝐶 ≤ 2 · 105), one line per
game.

Output
For each game in a separate line, in the same order as in the input file, print the number of blue
balls necessary for the chance of Alice’s victory to be as close as possible to 50%.

Examples
input.txt output.txt

5
2
3
6
7
8

1
1
2
1
2

Page 10 of 17

XXII Open All-Siberian Programming Contest named after I.V. Pottosin
Final tour, II day, Novosibirsk SU, November 7, 2021

Problem 8. Romualdych and remainders
Input file: input.txt
Output file: output.txt
Time limit: 2 seconds
Memory limit: 256 megabytes

Old man Romualdych learned about division with remainders and it just threw him off the hinges.
The thing got him all mixed up and sweating like a pig. What a sad sight he was, hoping to find
some number 𝑥 in the interval [𝑎, 𝑏], that would produce the specified remainder 𝑟 when divided
by some number 𝑦. Let’s face it — Romualdych is not the sharpest tool in the shed, and even if
he sinks his few remaining teeth into the task, he is not likely to cope without your help.

Input
The first line contains a single integer 𝑇 — the number of tests in the file (1 ≤ 𝑛 ≤ 200 000).

Each of the following 𝑇 lines contains three integers: 𝑎, 𝑏 — interval bounds, and 𝑟 — required
remainder (0 ≤ 𝑎 ≤ 𝑏 ≤ 1018, 0 ≤ 𝑟 ≤ 1018).

Output
Print 𝑇 answers in the same order as the tests in the input file are given, one answer per line.

Each answer consists of two integers 𝑥 and 𝑦, such that 𝑎 ≤ 𝑥 ≤ 𝑏, 1 ≤ 𝑦 ≤ 2 · 1018, and the
remainder from the division of 𝑥 by 𝑦 equals 𝑟. If there are several possible answers that fit all the
requirements, choose any answer with the minimal 𝑥. If there are no possible answers, print two
integers: 𝑥 = −1 and 𝑦 = −1.

Example
input.txt output.txt

2
6 8 0
3 5 10

6 3
-1 -1

Example explanation
In the first test, 6 is divided by 3, and the remainder is indeed 0. Since 6 is the smallest number
in the interval [6, 8], this is the correct answer. Instead, the following answer can be printed too:
𝑥 = 6 and 𝑦 = 2 (minimizing 𝑦 is not required), while the answer 𝑥 = 8 and 𝑦 = 4 cannot be
printed, because its 𝑥 is not minimal.

In the second test, there are no answers, since it is impossible to get a remainder of 10 for 𝑥 in
the interval [3,5] regardless of the 𝑦 it is divided by.

Page 11 of 17

XXII Open All-Siberian Programming Contest named after I.V. Pottosin
Final tour, II day, Novosibirsk SU, November 7, 2021

Problem 9. Polynomials
Input file: input.txt
Output file: output.txt
Time limit: 2 seconds
Memory limit: 256 megabytes

On the left side of the board, there are 𝑁 polynomials, and on the right side, there are 𝑀
polynomials. Your task is to construct each of the 𝑀 polynomials from the right side of the board
with the minimum number of actions.

To construct a polynomial from the right side, first choose any of the 𝑁 polynomials from the left
side. The following transformations can be applied to the chosen polynomial:

∙ Differentiation: a polynomial is replaced by its derivative.

∙ Integration: a polynomial is replaced by its antiderivative with an arbitrary integration
constant.

Transformations can be applied in arbitrary order any number of times, however, one application
counts as one action. You can use no transformations at all if a polynomial from the right side
matches some polynomial from the left side.

Input
The first line of the input file contains two integers: 𝑁 and 𝑀 (1 ≤ 𝑁,𝑀 ≤ 105).

Each of the following 𝑁 +𝑀 lines describes the polynomials, one polynomial per line. The first 𝑁
polynomials are polynomials from the left side of the board, the rest are from the right side of the
board.

The description of the polynomial 𝑎0 + 𝑎1𝑥 + · · · + 𝑎𝐾𝑥
𝐾 begins with a nonnegative

integer 𝐾 — its degree. Next come integers 𝑎0, 𝑎1, . . . , 𝑎𝐾 , which are the coefficients of the
polynomial (−109 ≤ 𝑎𝑖 ≤ 109). Herewith, 𝑎𝐾 ̸= 0.

It is guaranteed that the sum of degrees of all polynomials on the left side of the board is not
greater than 105. It is the same for the polynomials on the right side of the board.

Output
For each polynomial from the right side, print the minimum number of actions necessary for
its construction. Print your answers one per line in the same order as the order in which the
polynomials are listed in the input file.

Page 12 of 17

XXII Open All-Siberian Programming Contest named after I.V. Pottosin
Final tour, II day, Novosibirsk SU, November 7, 2021

Examples
input.txt output.txt

2 1
2 1 1 1
2 7 6 2
2 7 6 1

4

2 1
2 1 1 1
0 1
1 1 1

1

Example explanation
In the second example there are two polynomials on the left side of the board: 𝑝1(𝑥) = 1+ 𝑥+ 𝑥2

and 𝑝2(𝑥) = 7 + 6𝑥 + 2𝑥2. We need to obtain the polynomial 𝑞(𝑥) = 7 + 6𝑥 + 𝑥2. In order to do
that we apply differentiation to 𝑝1 twice obtaining 𝑝′1(𝑥) = 1 + 2𝑥 first, and 𝑝′′1(𝑥) = 2 next. Now,
let’s integrate 𝑝′′1(𝑥) with 6 as the integration constant producing 6 + 2𝑥. We integrate the result
once again with 7 as the integration constant to get 7 + 6𝑥+ 𝑥2. We used 4 actions in total.

Page 13 of 17

XXII Open All-Siberian Programming Contest named after I.V. Pottosin
Final tour, II day, Novosibirsk SU, November 7, 2021

Problem 10. Find the vault
Input file: input.txt
Output file: output.txt
Time limit: 6 seconds
Memory limit: 512 megabytes

Khodislav is playing his favorite roguelike game. Every level of the game is a rectangular grid,
and each cell is either empty or containing a wall. Until the player gets near the cell, they have
no way of knowing what is in it.

Vault rooms, which are especially valued, can be hidden in such a manner that the player cannot
reach them by usual means. To get into such a room, the player must cast a spell that uncovers
a portion of cells on that level, as well as the teleportation spell. Luckily, the wiki page of the
game contains a layout of the vault, which is rectangular. The vault can be located anywhere in
the game level, but its orientation must exactly match the layout on the wiki.

Khodislav has already unlocked a part of the level and is curious as for where the vault can be.
Find all possible positions of the top left corner of the vault room that do not contradict what is
already known about the level. Note that the vault must fully fit into the level.

Input
The first line contains four integers: 𝑅, 𝐶 — the number of rows and columns in the game
level, respectively, and 𝐴, 𝐵 — the number of rows and columns in the vault layout, respectively
(1 ≤ 𝑅,𝐶 ≤ 2 000, 1 ≤ 𝐴 ≤ 𝑅, 1 ≤ 𝐵 ≤ 𝐶).

It is followed by the map of the level: 𝑅 lines each containing 𝐶 characters. For each cell, one of
the three characters is provided:

‘#’ (ASCII 35) — the cell is wall,
‘.’ (ASCII 46) — the cell is empty,
‘_’ (ASCII 95) — the contents of the cell are unknown.

The remaining 𝐴 lines describe the vault layout, 𝐵 characters per line. For each cell, one of the
three characters is provided:

‘#’ (ASCII 35) — the cell must be wall,
‘.’ (ASCII 46) — the cell must be empty,
‘_’ (ASCII 95) — the cell can be anything.

Output
In the first line, print an integer 𝐾 — the number of possible positions of the vault
(0 ≤ 𝐾 ≤ (𝑅 − 𝐴 + 1) · (𝐶 − 𝐵 + 1)). In the remaining 𝐾 lines, print these positions, one
per line. Each position is defined by two space-separated integers 𝑢 and 𝑣 — the indices of the row
and column in the level where the top left cell of the vault layout is located (1 ≤ 𝑢 ≤ 𝑅− 𝐴+ 1,
1 ≤ 𝑣 ≤ 𝐶 −𝐵 + 1).

The positions must be arranged in the ascending order of 𝑢, and for equal 𝑢 — in the ascending
order of 𝑣.

Page 14 of 17

XXII Open All-Siberian Programming Contest named after I.V. Pottosin
Final tour, II day, Novosibirsk SU, November 7, 2021

Examples
input.txt output.txt

12 12 6 6
_______###__
______##.##_
______#...#_
___#####.##_
###..###.#
##.##......#
#...#.####_#
##.##.._____
###.______
_____.______
_____.______
_____.______
__###_
_##.##
_#...#
_##.##
__###_

2
1 6
7 7

4 5 2 3

.##
.._
__#__
_##
##.

0

Illustration
The illustration to the first sample is given on the next page.

Two possible positions of the vault are shown with bold red frames. In the bottom position,
contents of the most of the cells are unknown: only two cells are precisely defined both on the
level map and on the vault layout. A structure closely resembling a vault can be seen on the left.
However, it does not fully fit the level map without an additional column on the left.

Page 15 of 17

XXII Open All-Siberian Programming Contest named after I.V. Pottosin
Final tour, II day, Novosibirsk SU, November 7, 2021

#

#

#

##

###

##

#

#

.

.

.

.

.

#

###

#

##

###

#####

###

#

##

##

#

#

#

#

.

.

.

.

.

.

.

. .

.

. .

.

.

.....

.

. .

.

.

.

.

Page 16 of 17

XXII Open All-Siberian Programming Contest named after I.V. Pottosin
Final tour, II day, Novosibirsk SU, November 7, 2021

Problem 11. Captivating process
Input file: input.txt
Output file: output.txt
Time limit: 2 seconds
Memory limit: 512 megabytes

Yulia wrote the number 𝑥 on the blackboard, and Zakhar wrote 𝑦. The kids are bored and have
come up with an extremely captivating activity. Once every minute, they erase their numbers
simultaneously and write new numbers instead. Yulia writes new numbers according to the
following rule: if her number equaled 𝑖, it is substituted by 𝑓𝑖. Zakhar does the same, but the
rule is different: if his number equaled 𝑖, it is substituted by 𝑔𝑖.

They will stop when their numbers match. This could happen right away (if 𝑥 = 𝑦), or later, or
maybe never. Your task is to determine for different values of 𝑥 and 𝑦, if the kids will ever end
writing out numbers.

Input
The first line contains two integers: 𝑁 and 𝑄 (1 ≤ 𝑁,𝑄 ≤ 105).

The second line contains 𝑁 numbers separated by spaces: 𝑓1, . . . , 𝑓𝑁 .

The third line contains numbers in the same format: 𝑔1, . . . , 𝑔𝑁 .

In the 𝑗th of the following 𝑄 lines there are the initial numbers 𝑥𝑗 and 𝑦𝑗.

It is guaranteed that the numbers 𝑓𝑖, 𝑔𝑖, 𝑥𝑗, 𝑦𝑗 are all integers and fall within the range of 1
through 𝑁 .

Output
Print 𝑄 lines: in the 𝑗th line, print YES, if the process that started from the numbers 𝑥𝑗 and 𝑦𝑗
ends, and NO otherwise.

Examples
input.txt output.txt

3 2
2 3 1
2 3 1
1 2
1 1

NO
YES

4 2
2 3 4 2
2 4 4 1
1 2
1 4

NO
YES

Page 17 of 17

