
XX All-Siberian Programming Contest named after I.V. Pottosin

Internet tour, NSU, September 29, 2019

Problem 1. Ants
Input file: input.txt

Output file: output.txt

Time limit: 1 second
Memory limit: 256 MB

Treasure hunting is a challenge that takes an inventive mind. Behold! «Ants», a game that will
peak your creativity!

The game is played in a 𝑛×𝑚 field, with chairs in some of its cells. There is also an anthill in the
field. Beginning from the first second, ants crawl out, one per second, each aiming for its favorite
chair. They take the shortest route - should we call it «antline»? It takes an ant one second to
move from a cell to any of its neighbor cells. Two cells are considerer neighbors if they share
common edge. Having reached its favorite chair, the ant annihilates with a joy.

All that’s left to the player is to observe and count the number of ants coming to their end on
each second. The ant is a tiny creature, and chairs do not block its movement in any way. There
can be a chair in any of the game field cells, including the cell with the anthill.

Input

The first line of the input file contains five integers 𝑛, 𝑚, 𝑘, 𝑟, 𝑐 — the field size, number of chairs
and anthill coordinates, respectively (1 ≤ 𝑛,𝑚 ≤ 100, 1 ≤ 𝑘 ≤ 𝑛 ·𝑚, 1 ≤ 𝑟 ≤ 𝑛, 1 ≤ 𝑐 ≤ 𝑚).

Next comes the description of the field — a rectangular table of 𝑛 lines and 𝑚 columns. Each
cell of the table contains a non-negative integer 𝑖 (𝑖 ≤ 𝑘). If 𝑖 = 0, the cell is empty, otherwise it
contains a chair with the number 𝑖.

It is guaranteed that all integers from 1 to 𝑘 occur in this table once. The favorite chair of the ant
which crawls out of the anthill on the 𝑖th second has the number 𝑖.

Output

In the first line of the output file, print the integer 𝑒 — the number of events describing the
self-annihilation of ants. In the following 𝑒 lines, describe the events proper — two integers per
each — the number of the second and the number of ants that have annihilated during that
second. Moments in time must be strictly ascending, and the number of ants in each event must
be positive.

Examples

input.txt output.txt

3 5 4 2 5

0 0 1 0 0

0 0 0 0 3

0 4 0 0 2

3

3 2

4 1

8 1

Page 1 of 22



XX All-Siberian Programming Contest named after I.V. Pottosin

Internet tour, NSU, September 29, 2019

Problem 2. Blend
Input file: input.txt

Output file: output.txt

Time limit: 2 seconds
Memory limit: 256 MB

A popular architectural CAD program has an operation to create a solid body called “Blend”. This
operation takes two contours lying in parallel planes and builds a body between these contours.
The area bounded by each of the contours in its plane becomes a top or bottom face of the body,
and a set of lateral faces is constructed between the two contours.

The lateral surface is built in the following manner (see figure 1 below samples). On each of
the contours, a start point is chosen. Each contour has a predefined orientation, i.e. a direction
of traversal. The selected start points are joined by an active segment (which is a straight line
segment). Next, the ends of the active segment are moved along the contours: the end on the
bottom contour is moved along the bottom contour, and the end on the top contour is moved
along the top contour. As the active segment moves, it sweeps the lateral surface. To obtain the
complete lateral surface of the resulting body, each of the endpoints must go one full turn around
the corresponding contour. It is forbidden to move an end of the active segment against the chosen
direction of contour transversal.

For the purpose of this problem, assume that each contour is a closed polyline consisting of line
segments. Note that the rules described above are ambiguous: you can build all sorts of lateral
surfaces for the contours by varying how fast you move the ends of the active segment. To resolve
the ambiguity, additional rules are introduced. When one end of the active segment is at a vertex
of the polyline, the other end must also be at a vertex of the other polyline. Such positions of the
active segment define the lateral edges of the created body, and the parts of the lateral surface
between consecutive lateral edges are called lateral faces.

Hence each lateral face of the body must either join a segment of one of the polylines with a vertex
of the other polyine (a triangle), or join a segment of one of the polylines with a segment on the
other polyline (a quadrangle). The quadrangle can even be curvilinear: in this case, its precise
geometry depends on the relative speed of the ends of the active segment. In reality, these speeds
are also regulated, but this is irrelevant for this problem. Ultimately, the resulting body is strictly
defined if we select which lateral edges must be built, i.e. how the vertices of the given polylines
must be matched.

Generally, this is defined by the engineer — the CAD software user. For simplicity, the program
provides a default matching. It is chosen in such a way that the total length of all the lateral
edges is minimal possible. Write a program that will calculate this default matching based on the
provided input contours.

Note that this description does not tell anything about self-intersections of the lateral surface.
Naturally, if these problems do occur, the body will not be a solid body, strictly speaking. Such
anomalies are possible and allowed with the “Blend” operation, including the case when lateral
edges are chosen by default. The discovery and correction of these problems is done with completely
different algorithms.

Input

The first line contains three integers: 𝑀 — number of vertices in the bottom polyline, 𝑁 — number
of vertices in the top polyline, and 𝐻 — height of the body (3 ≤ 𝑀,𝑁 ≤ 300, 1 ≤ 𝐻 ≤ 106).

Page 2 of 22



XX All-Siberian Programming Contest named after I.V. Pottosin

Internet tour, NSU, September 29, 2019

The following 𝑀 lines define the coordinates of the vertices of the bottom polyline. Each line
contains two integers: x- and y- are the coordinates of the vertex. Vertices are listed according to
the selected direction of traversal of the polyline; the last defined vertex is followed by the first
defined vertex. The remaining 𝑁 lines contain the coordinates of the top polyline in the same
format.

All coordinates do not exceed 106 in absolute value. The bottom polyline lies in the plane 𝑧 = 0, and
the top polyline lies in the plane 𝑧 = 𝐻. All vertices on every polyline are distinct. Self-intersections
are allowed.

Output

In the first line of the output file, print a real number 𝐴 — the total length of the lateral edges in
your solution, and an integer 𝐾 — the number of lateral edges (max(𝑀,𝑁) ≤ 𝐾 ≤ 𝑀 +𝑁).

In the remaining 𝐾 lines, print the lateral edges in the order as they are sweeped by the active
segment. You can start from any lateral edge. For each lateral edge, print a separate line with two
integers 𝑖 and 𝑗 — the indices of the vertices joined by the edge the in bottom and top polylines,
respectively (1 ≤ 𝑖 ≤ 𝑀 , 1 ≤ 𝑗 ≤ 𝑁).

The absolute or relative deviation of the value 𝐴 from the optimal one must not exceed 10−9.

Examples

input.txt output.txt

3 3 1

0 0

2 0

1 1

3 -1

1 2

-1 -1

4.878315177510850 3

1 3

2 1

3 2

9 3 3

0 2

1 0

2 0

7 0

8 1

8 5

3 7

2 7

0 6

6 2

2 6

2 2

33.210944197060996 9

1 3

2 3

3 3

4 1

5 1

6 1

7 2

8 2

9 2

Illustration

(on the next page)

Page 3 of 22



XX All-Siberian Programming Contest named after I.V. Pottosin

Internet tour, NSU, September 29, 2019

active
seg
m
en
t

lateral surface

bottom
contour

top contour

st
ar
t

Рис. 1: Lateral surface sweeped by the active segment.

Рис. 2: Second sample: lateral edges and faces.

Page 4 of 22



XX All-Siberian Programming Contest named after I.V. Pottosin

Internet tour, NSU, September 29, 2019

Problem 3. Backup
Input file: input.txt

Output file: output.txt

Time limit: 2 seconds
Memory limit: 256 MB

There are many different backup strategies. The easiest to understand are the differential and
incremental backups.

With incremental backup, we create a copy of the data which were changed from the moment of
the last backup: for instance, after a full backup on Sunday, on Monday we copy the data that
were changed during Monday; the same goes for Tuesday, etc. With such strategy, the volume of
data copied is relatively small, but it may require a lot of files to restore the data. For instance, to
restore data on Friday, we would need backup copies from Sunday (full backup), Monday, Tuesday,
Wednesday and Thursday.

With differential backup, we regularly create a full copy — for instance, every Sunday. Next, on
each day of the week we make a copy of all data modified after the last full backup: a Monday
copy on Monday, a Monday and Tuesday copy on Tuesday, etc. The total volume of the backed
up data is relatively large, but you only need two files to restore data: the last differential and the
last full backup.

Dump(1), a popular backup freeware, operates with the concept of backup level, which can perform
incremental or differential backup as well as more complex strategies, which cannot be reduced to
the two former methods. The idea of backup levels as such is pretty simple: when we make an 𝑁
level backup, we copy all files modified from the moment of the last backup with the level lower
than 𝑁 . If there are no preceding lower-level backups, we make a complete backup copy of all
data.

Write a program to figure out which backup files should be used for recovery based on the backup
schedule.

Input

The first line of the input file contains the number 𝑀 – the total number of tests in the file
(0 < 𝑀 ≤ 100 000).

Each following line of the input file consists of eight space-separated decimal numbers. The first
seven numbers are schedule of backups, i.e. the levels of backup 𝑁𝑖, which are performed on the
corresponding days of the week 𝑖: on Sunday, Monday, Tuesday, etc. (0 ≤ 𝑁𝑖 ≤ 9). It is guaranteed
that the zero-level backup is performed on Sunday, i.e. the first number is zero.

The eighth number is the day 𝑑 when data must be recovered (0 ≤ 𝑑 ≤ 6). Note that 0 is Sunday
and 6 is Saturday.

Output

For each line of the output file, print a sequence of numbers 𝑑𝑗 corresponding to the days when
the backup copies necessary for recovery were made (0 ≤ 𝑑𝑗 ≤ 6). Note that the earliest copy is
always recovered first, followed by a later copy, hence the following must hold true: 𝑑𝑗 < 𝑑𝑗+1 and
𝑁𝑗 < 𝑁𝑗+1. Moreover, the recovery always ends with the latest copy, so the last number in the
line must equal 𝑑.

Page 5 of 22



XX All-Siberian Programming Contest named after I.V. Pottosin

Internet tour, NSU, September 29, 2019

Examples

input.txt output.txt

4

0 0 0 0 0 0 0 4

0 8 8 8 8 8 8 3

0 2 3 4 5 6 7 4

0 7 2 6 3 5 4 4

4

0 3

0 1 2 3 4

0 2 4

Page 6 of 22



XX All-Siberian Programming Contest named after I.V. Pottosin

Internet tour, NSU, September 29, 2019

Problem 4. bit gisect
Input file: standard input stream

Output file: standard output stream

Time limit: 3 seconds
5 seconds (for Java)

Memory limit: 256 MB

Vasya the programmer is using Bit, a version control system for storing his code. The history
of changes in Bit can be viewed as an oriented acyclic graph. The nodes of this graph are called
revisions. When Vasya wants to make changes in the code, he can take an arbitrary revision 𝐴 and
change the code, resulting in a new revision 𝐷. In these case, we call the revision 𝐷 dependent of
the revision 𝐴. Each of these dependencies in Bit is expressed as an arc from the revision node 𝐴
to the revision node 𝐷. Mergers are a special revision type in Bit: Vasya can join any two arbitrary
revisions 𝐴 and 𝐵 and merge them into a new revision 𝐷. In this case, the revision 𝐷 will depend
on two revisions: 𝐴 and 𝐵. The repository also contains a single “initial” revision: it is the only
revision which does not depend on any other revision. All other revisions in Bit depend on one
or more other revisions. Vasya has finished working on his project: there is strictly one revision
which does not have any dependent revisions.

1

2

3

5

8

4
7

9

6

But one day, something went wrong, and the code became bug-ridden. Vasya
is still trying to find them. Here is what Vasya’s bugs do: if a bug appears in
a revision 𝐴, it affects all revisions accessible from 𝐴 in the Bit graph: the
revision 𝐴, all revisions dependent on 𝐴, all revisions dependent on revisions
dependent on 𝐴, etc. To find the bug, Vasya can switch between revisions
and check for the bug in the different revisions, thus narrowing down the
suspect list. In the end, he will find the initial revision containing the bug.

Vasya is getting bug reports from the users, one after another, and he must
find all these bugs, one by one. Help Vasya fix the code as quickly as possible.

The figure shows an example with 9 revisions. The revision 1 is the initial
revision. The revisions 7, 8, and 9 are mergers, each depending on two other
revisions. The revision 2, which sprouted a bug, and all dependent revisions
suffering from that bug are highlighted in gray.

Interaction Protocol

This is an interactive problem. Instead of file input-output, you will be
working with a special program— the interactor. You will be interacting with this program through
the standard input-output streams.

Upon the start, your program is fed information about revisions through the standard input
stream. The first line contains an integer 𝑁 — the number of revisions in Bit (1 ≤ 𝑁 ≤ 1 000).
The following 𝑁 lines contain the descriptions of revisions, each beginning with a revision number
— a string of 6 hex digits (digits from 0 to 9 and lower case latin letters from ‘a’ to ‘f’). It is
guaranteed that this description does not contain a revision with the number 000000. It is followed
by an integer 𝑘 — the number of revisions from which the current revision depends (0 ≤ 𝑘 ≤ 2),
followed by 𝑘 space-separated revision numbers. It is guaranteed that by the moment of describing
a new revision all descriptions of the revisions on which it depends have been provided.

Vasya must now find his bugs. It is guaranteed that there are no more than 10 000 bugs in the

Page 7 of 22



XX All-Siberian Programming Contest named after I.V. Pottosin

Internet tour, NSU, September 29, 2019

code.

A search for bugs begins with feeding the line “bug” to the program through the input stream,
followed by a space-separated number of the revision where the new bug has been located. If the
line “000000” is provided as the revision number, it means that all bugs have been found and the
program must stop. Otherwise, the search for bugs begins.

Next, your program must send queries to the standard input stream. Each query must consist of
a single line containing a command and the number of the revision upon which that command
must be executed. The command can be one of the following:

∙ check — check the revision for bugs. The answer is provided as the line “bad” if the revision
is bugged, and “good” if there are no bugs in the revision.

∙ fix — means that you have found a bug-ridden revision. After the command fix your
program must start looking for the next bug.

For each bug, your program can make no more than 20 queries, otherwise the solution will receive
the Wrong Answer verdict.

Make sure to print the line break symbol and clear the output stream buffer (the flush command
of the language) after each printed query. Otherwise, the solution can be deemed Timeout.

Example

For ease of reading, the commands in the example are separated by blank lines.

standard input stream standard output stream

9

000001 0

000002 1 000001

000003 1 000002

000004 1 000002

000005 1 000003

000006 1 000001

000007 2 000006 000001

000008 2 000004 000005

000009 2 000007 000008

bug 000008

bad

good

bad

bug 000009

bad

good

bug 000000

check 000004

check 000001

check 000002

fix 000002

check 000007

check 000006

fix 000007

Page 8 of 22



XX All-Siberian Programming Contest named after I.V. Pottosin

Internet tour, NSU, September 29, 2019

Problem 5. Slots
Input file: input.bin

Output file: output.bin

Time limit: 1 second
Memory limit: 256 MB

Game programming has its own tips and tricks for solving commonly occuring problems; these
tricks are called “patterns”. One of the patterns has to do with placing game objects within the
array.

There is an array 𝐴 of fixed size 𝑁 consisting of slots, numbered from 1 to 𝑁 . Throughput the
game, game objects can be created and destroyed. From the moment of its creation, each object
must be assigned into a slot in the array 𝐴. When an object is destroyed, its slot becomes free
and can be eventually reused for newly created objects.

Moreover, each object also has an integer ID, which remains unique for the object throughout the
game. IDs are assigned to objects consecutively starting from the number 1.

Finally, to assure that the creation of new objects does not take longer than 𝑂(1), a stack of all
currently free slots of the array 𝐴 is maintained.

A new object is created in several steps:

1. The slot index 𝑥 is popped from the top of the free slots stack.
2. The new object is assigned to the slot 𝑥.
3. The new object is assigned an ID, which is either greater by 1 than the last assigned ID, or

equals 1 if it is the very first object in the game.

An object is destroyed in the following steps:

1. The slot 𝑥, which contains the object being destroyed, becomes free.
2. The slot index 𝑥 is pushed onto the top of the free slots stack.

Such a system allows to emplace game objects into the array of slots conveniently. The operations
of creation and destruction both take constant time. Moreover, we can even store “weak references”
to objects thanks to having IDs! Weak reference as such a reference that you can check whether
the object it points to has already been destroyed or is still alive.

In this problem, you must find out whether it is possible to reach the given configuration of the
described system of slots; and if so, how to do that with the least possible number of operations.
Two types of operations are allowed: create a new object and destroy the object in the given slot.

For each slot it is known whether it must be free or occupied in the end of the game. If a slot
must be occupied, then an object with the prescribed ID must be located in it.

Initially all slots are free, as there are no live objects and the game has just begun. The free slots
stack contains all the slots of array 𝐴 in their natural order; the first slot is at the top of the stack.

Attention: in this problem, the input file input.bin and the output file output.bin contain
binary data! All integers are provided in the format native to the checking machines, with
little-endian byte order.

Page 9 of 22



XX All-Siberian Programming Contest named after I.V. Pottosin

Internet tour, NSU, September 29, 2019

Input

The input file consists of (𝑁 + 1) 32-bit integers. The first integer is 𝑁 — the number of slots
(1 ≤ 𝑁 ≤ 106). The remaining 𝑁 numbers define the required configuration.

Each number defines the contents of the corresponding slot:

∙ 0 — means that the slot must be free,
∙ 𝑘 > 0 — means that the slot must contain an object with ID = 𝑘.

It is guaranteed that all given IDs are different and do not exceed 2 · 106.

Output

If the required configuration cannot be obtained, the output file must contain a single 32-bit
integer −1.

Otherwise print (𝑀 +1) 32-bit integers. The first of these integers is 𝑀 — the minimal number of
operations necessary to produce the configuration. The remaining𝑀 numbers define the operations
in the order of their execution.

Each operation is encoded as a single integer:

∙ 0 — means that a new object must be created,
∙ 1 ≤ 𝑥 ≤ 𝑁 — means that the object in the slot 𝑥 must be destroyed.

All operations must be correct: you cannot destroy an object in a free slot; you cannot create an
object when there are no free slots.

Examples

These examples show the contents of the input and output files in hex format. In the testing system,
files will contain binary data. Examples in binary format can be downloaded in the «News» tab
near the problem statements.

input.bin

0A 00 00 00 01 00 00 00 02 00 00 00 03 00 00 00

04 00 00 00 05 00 00 00 0A 00 00 00 09 00 00 00

08 00 00 00 00 00 00 00 0C 00 00 00

output.bin

0F 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 06 00 00 00 07 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 09 00 00 00

input.bin

05 00 00 00 05 00 00 00 04 00 00 00 03 00 00 00

02 00 00 00 01 00 00 00

output.bin

FF FF FF FF

Example explanation

In the first example, we consecutively create 8 objects, which occupy the first 8 slots, with the IDs
from 1 to 8. Next, the objects in the slots 6 and 7 are destroyed (with IDs of 6 and 7, respectively),

Page 10 of 22



XX All-Siberian Programming Contest named after I.V. Pottosin

Internet tour, NSU, September 29, 2019

in such order that the slot 7 ends up at the top of the free slots stack. Next, two objects are created:
they are assigned IDs 9 and 10, which are next in order, and fall into the slots 7 and 6, respectively.
Finally, two more objects with IDs 11 and 12 are created, which are assigned to the last two slots,
and the object with ID 11 in the slot 9 is destroyed.

In the second example, it is impossible to achieve the required configuration.

Page 11 of 22



XX All-Siberian Programming Contest named after I.V. Pottosin

Internet tour, NSU, September 29, 2019

Problem 6. Tea Sort
Input file: input.txt

Output file: output.txt

Time limit: 3 seconds
Memory limit: 256 MB

After a long day of laborious coding, Stepan decided to have five o’clock tea. Programmers love
tea of all kinds: kocha, sencha, matcha, mocha and the like. Stepan went into the kitchen and
discovered that all packs with tea in the drawer had been mixed. What a mess! Stepan likes order.
He wants to have the packs arranged in the usual order.

There are 𝑁 packs of tea in the drawer, arranged in 𝐾 rows. In each row, the packs are lined
up, from the pack closest to Stepan to the most distant. But the drawer is very low, and you can
only pick the closest pack of tea in each row. So, the only possible operation here is to pick the
closest pack from a row 𝑖 and put it into the row 𝑗, where it becomes the closest pack. In the
programming mumbo-jumbo, each row is a stack, or “LIFO”.

Each pack is marked with an integer, which denotes the type of tea. Stepan likes it when:

1. the number of packs in every row is the same,
2. the type number of the pack from the row 𝑖 is less than or equals the type number of the

pack from the row 𝑗 (for any 𝑖 < 𝑗),
3. in every row, packs are arranged by type in the ascending order from the closest to the most

distant pack.

Suggest a plan with no more than 13 ·𝑁 operations of moving packs, resulting in everything being
in place according to Stepan’s taste. You do not need to minimize the number of operations.

Input

The first line of the input file contains two integers 𝑁 and 𝐾 — the number of packs of tea and
the number of rows (1 ≤ 𝑁 ≤ 105, 11 ≤ 𝐾 ≤ 111).

It is followed by 𝐾 lines, with each 𝑟-th line defining the 𝑟-th row of tea packs. For each row, an
integer 𝑇𝑟 is provided, denoting the number of packs in the row, followed by 𝑇𝑟 integers — the
types of tea in the packs of this row (0 ≤ 𝑇𝑟 ≤ 𝑁). Packs in a row are listed from the closest to
the most distant.

It is guaranteed that the sum of all 𝑇𝑟 equals 𝑁 , and that 𝑁 is divisible by 𝐾. Integers denoting
tea types are not greater than 109 in absolute value.

Output

In the first line of the output file, print one integer 𝑀 — the number of operations in your plan
(0 ≤ 𝑀 ≤ 13 ·𝑁).

In the remaining 𝑀 lines, print the operations in the order of their execution. For each operation,
print two space-separated integers: 𝑖 — the number of the row, from which Stepan must pick the
closest pack, and 𝑗 — the number of the row where he must put it (1 ≤ 𝑖, 𝑗 ≤ 𝐾).

Page 12 of 22



XX All-Siberian Programming Contest named after I.V. Pottosin

Internet tour, NSU, September 29, 2019

Examples

input.txt output.txt

33 11

3 -1 1 1

3 1 1 1

3 1 2 2

3 3 3 3

3 3 4 4

3 5 7 7

3 7 7 7

3 7 8 8

3 8 9 9

3 9 9 9

3 9 9 9

0

33 11

3 -1 1 1

3 1 1 1

3 1 2 2

0

5 3 4 3 3 4

4 5 7 7 3

3 7 7 7

3 7 8 8

3 8 9 9

3 9 9 9

3 9 9 9

13

6 7

6 7

6 7

6 4

7 6

7 6

7 6

5 4

5 11

5 4

5 4

11 5

4 5

Example explanation

In the first example, all packs are already placed in Stepan’s favorite order, so there’s nothing to
do here.

In the second example, the row 4 is empty, and the packs that should be there have been placed
in the rows 5 and 6. The first seven operations of the plan pick the packs of the type 3 from the
row 6. Note that this pack is the most distant, so to pick it, the preceding three packs must be
picked first. These packs are placed to the row 7 in reverse order; upon the removal of the desired
pack of the type 3, they are placed back in the right order. The remaining six operations move
two packs of the type 3 from the row 5 to the row 4. This shifts a pack of the type 4 further in
this row.

Page 13 of 22



XX All-Siberian Programming Contest named after I.V. Pottosin

Internet tour, NSU, September 29, 2019

Problem 7. Shooting
Input file: input.txt

Output file: output.txt

Time limit: 1 second
Memory limit: 256 MB

Father Theodore, in possession of a piece of stolen sausage, has hidden in the mountains; the
concessioners have got nothing else to do but try to strike him in the eye with a rock, just like the
elders have always advised.

Ostap and Kisa are at the foot of the mountains; they are throwing a rock, aiming at the thief’s
eye. Your task is to find the minimal initial speed such that the rock will reach Father Theodore,
having passed through all obstacles during its flight.

For simplicity, assume that the landscape,
where the three are situated, is a polyline on a
plane. The coordinate 𝑦 for the plane denotes
height. The sizes of the people are negligible, so
Ostap and Kisa can be reduced to a single point
on the terrain, the other point being Father
Theodore’s eye.

The rocks flies in a parabola, subjected to
gravity acceleration 𝑔, which, for convenience,
we will assume equal to 10. The air resistance is negligibly small. The rock must fly above the
polyline.

Input

The first line of the input file contains the number 𝑛 — the number of nodes in the polyline
(2 ≤ 𝑛 ≤ 105). It is followed by 𝑛 lines. The 𝑖-th line contains two integers 𝑥𝑖, 𝑦𝑖 — the coordinates
of the 𝑖-th node of the polyline (0 ≤ 𝑥𝑖, 𝑦𝑖 ≤ 107, 1 ≤ 𝑖 ≤ 𝑛). It is guaranteed that the sequence
𝑥𝑖 is strictly ascending, i.e. 𝑥𝑖 < 𝑥𝑗 when 𝑖 < 𝑗.

We know that Ostap and Kisa are in the first node of the polyline (𝑥1, 𝑦1), and Father Theodore
is in the last node (𝑥𝑛, 𝑦𝑛).

Output

The output file must contain a single integer — the minimal initial speed of the rock sufficient to
give Father Theodore a black eye.

The relative or absolute error of the answer must not be greater than 10−6.

Page 14 of 22



XX All-Siberian Programming Contest named after I.V. Pottosin

Internet tour, NSU, September 29, 2019

Examples

input.txt output.txt

6

1 2

4 4

5 0

6 3

8 4

11 2

10

3

0 0

1 3

5 2

10.4963363572

Page 15 of 22



XX All-Siberian Programming Contest named after I.V. Pottosin

Internet tour, NSU, September 29, 2019

Problem 8. Accelerometers calibration
Input file: input.txt

Output file: output.txt

Time limit: 1 second
Memory limit: 256 MB

Modern smart devices can serve as GPS navigators and step counters; they can tell whether the
user is walking, running, taking a taxi or a bus; they can automatically re-orient the image on the
screen, etc. To do all of these and many other things, they rely on the so called accelerometers.
A simplest single-channel accelerometer is connected with a direction, which is its sensitivity
axis; readings from a stationary acccelerometer allow to compute the deviation of its axis from a
downward vertical, i.e. from the vector of gravity. If there are several single-channel accelerometers
mounted on the device, the positions of their axes can be be used to define the spatial orientation
of the device as a whole.

A perfect accelerometer measures the cosine of the angle between its sensitivity axis and the
direction of gravity. If the sensitivity axis is pointed downwards, i.e. along the gravity vector 𝑔,
the accelerometer shows the value 1, if the sensitivity axis is pointed upwards, it shows the value
−1. If the axis is tilted at an angle to the vertical, the readings of the perfect accelerometer equals
the projection of a single gravity vector 𝑔 on the axis:

However, the production of the miniature accelerometers is not entirely fault-free. Defects of
sensors lead to the following errors in readings:

1. deviation of the sensitivity axis of the accelerometer from the specified direction (anchoring
fault);

2. proportional change in readings, i.e. increase or decrease in all readings according to a
common factor;

3. systemic shift of all readings of a specific value;

If there are several accelerometers installed in the device, the errors described above can manifest
differently in each of the accelerometers. However, if we examine a series of readings of an
accelerometer in different positions, it turns out that the errors affect all of its readings identically.

To figure out the precise nature of the distortions in the accelerometer readings in order to correct
them digitally, accelerometers are calibrated. One of the ways to calibrate is to collect their
readings in several strictly defined positions of the device and to calculate the parameters of the
defects described above for each of the accelerometers of the device. These parameters can be then
applied to define the orientation of the device in arbitrary position.

Page 16 of 22



XX All-Siberian Programming Contest named after I.V. Pottosin

Internet tour, NSU, September 29, 2019

In this problem, we will examine a device with two rigidly fixed accelerometers. When the device
is oriented in space in the standard manner, one of the accelerometers must be pointed to the riht
along the axis 𝑋, and the other must be pointed up along the axis𝑍 (contrary to gravity). The
user can rotate the device: assume that rotation is only possible in the plane 𝑋𝑍. In this case, the
orientation of the device is defined completely by the angle of counter-clockwise rotation along
the axis 𝑌 from the standard position (i.e. from the axis 𝑋 to the axis 𝑍).

акселерометр1

акселерометр2

x

z

y

To calibrate such an accelerometer, the accelerometer readings are taken when the device is rotated
by degrees divisible by 90, which allows to define all parameters of the defects.

Based on the provided calibration datasets, define the parameters of the defects and find a way
to define the real position of the device based on the accelerometer readings.

Input

The first four lines of the input file contain the readings of the degrees of the device rotation,
which are 0, 90, 180 and 270 degrees, respectively.

The next line of the input file contains an integer 𝑇 — the number of readings, for which the
position of the device must be defined (1 ≤ 𝑇 ≤ 1 000). Each of the remaining 𝑇 lines contains
accelerometer readings for the degree of the device rotation, which must be defined.

Each reading contains two space-separated real numbers — the readings of the first accelerometer
(oriented along the axis 𝑋) and of the second accelerometer(oriented along the axis 𝑍),
respectively. Both numbers are defined with 15 digits after the decimal point.

It is guaranteed that the readings in the input file have been acquired using the model of
measurements and errors described in the problem statement. Errors in readings cannot be too big:
the deviation of the sensitivity axis from the default is never greater than 30∘, and the proportional
change of readings never changes them more than two-fold, and the shift is never greater than 5
in absolute value.

Output

In the output file, print 𝑇 numbers, one per line. Each number is the turning angle for the device
in degrees for the coorresponding values of the accelerometers. The turning angle must be within
the range of 0∘ to 360∘ inclusive. The relative or absolute error of each answer must not be greater
than10−6.

Page 17 of 22



XX All-Siberian Programming Contest named after I.V. Pottosin

Internet tour, NSU, September 29, 2019

Examples

input.txt output.txt

0 -1

-1 0

0 1

1 0

5

-0.707106781186547 -0.707106781186547

-0.707106781186547 0.707106781186547

0.707106781186547 0.707106781186547

0.707106781186547 -0.707106781186547

-0.866025403784438 -0.5

45

135.00

225

315

60

-0.091012995433623 -0.946575228282571

-0.983288528313429 0.028440168472892

0.291012995433623 0.846575228282571

1.183288528313429 -0.128440168472892

5

-0.801067248717891 -0.628508848717885

-0.530934079986151 0.639439998807080

1.001067248717891 0.528508848717886

0.730934079986151 -0.739439998807080

-0.933661882864499 -0.430356435566630

45.000000000000043

135.000000000000000

225.000000000000000

315.000000000000000

59.999999999999986

Example explanation

In the first example, there are no defects in the accelerometers.

In the second example, all three error components influence each of the two accelerometers, and
to a different degree.

Page 18 of 22



XX All-Siberian Programming Contest named after I.V. Pottosin

Internet tour, NSU, September 29, 2019

Problem 9. Trees
Input file: input.txt

Output file: output.txt

Time limit: 1 second
Memory limit: 256 MB

Vasya has gone deep into the graph theory. He’s read a chapter about trees, and a problem has
been bothering him: he must build a root tree with 𝑁 nodes, with each node, except the leaf
nodes, having strictly 𝐾 children. The answer must be written as a list of edges; of all possible
variants, he must find the lexicographically minimal one.

The list of edges is written into a line in the following manner. Each edge is described by a pair of
integers — the numbers of nodes, which the edge connects. These two numbers must be written
without leading zeroes, and there must be strictly one space symbol between them. A line consists
of the descriptions of all 𝑁 −1 edges of the graph, written consecutively and separated by a single
space symbol. It is assumed that all nodes are numbered from 1 to 𝑁 , the root being number 1.

Vasya must find a lexicographically minimal line, which can be obtained in this manner for a
rooted tree of the required kind. In lexicographical comparison assume that the space as a symbol
is smaller than all digits.

For isntance, let’s build a tree with 5 nodes, with all non-leaf nodes having 2 children. A tree with
the edges (1, 4), (1, 5), (4, 3), (4, 2) fits the requirement. The list of its edges can be written in a
line in different manners:

∙ 4␣2␣4␣3␣1␣4␣1␣5

∙ 2␣4␣3␣4␣1␣4␣1␣5

∙ 1␣4␣1␣5␣2␣4␣3␣4

Here, each variant is smaller than the preceding one, but none are optimal. With these values of
𝑁 and 𝐾 the lexicographically minimal line 1␣2␣1␣3␣2␣4␣2␣5 is produced by a different tree.

Help Vasya solve this task, he’s got a test on graph theory coming up!

Input

The first line of the input file contains two integers 𝑁 and 𝐾, where 𝑁 — is the number of nodes
in the required tree, 𝐾 — is the number of children of non-leaf nodes (2 ≤ 𝑁 ≤ 105, 1 ≤ 𝐾 ≤ 105).

Output

If the tree with the specified parameters does not exist, print the word No into the single line of
the output file.

Otherwise, in the first line of the output file, print the wordYes, in the second line, print the
required lexicographically minimal line.

Examples

input.txt output.txt

5 2 Yes

1 2 1 3 2 4 2 5

4 10 No

Page 19 of 22



XX All-Siberian Programming Contest named after I.V. Pottosin

Internet tour, NSU, September 29, 2019

Problem 10. Team order
Input file: input.txt

Output file: output.txt

Time limit: 5 seconds
Memory limit: 256 MB

𝑁 teams are planning to go to the All-Siberian Programming Contest, but none of them has
registered yet. After the registration, teams are sorted lexicographically by their names. The
contest jury want to know the order of the teams in the list. They did a little study. Having
studied the teams’ performance at other contests, the jury have compiled a list of possible names
for every team. They found that the team with the number 𝑖 could use any of its favorite names
𝑆𝑖1, . . . , 𝑆𝑖𝐾𝑖

to register.

Here comes the question. Is it true that their little study is absolutely worthless? In other words,
is it true that teams can end up in the list in any order? If this is wrong, the jury at least wants
to know a single order of the teams which would be impossible.

Input

The first line of the input file contains a single integer 𝑁 — the number of teams(1 ≤ 𝑁 ≤ 350).
It is followed by 𝑁 blocks of lines, each describing a team in the order of its number from 1 to 𝑁 .

The first line of the description of the 𝑖-th team contains a single integer positive number 𝐾𝑖. The
description block of the 𝑖-th team consists of 𝐾𝑖 + 1 lines, including the line with the number
𝐾𝑖 proper. The following 𝐾𝑖 lines contain the possible names of the 𝑖-th team, one per line:
𝑆𝑖1, . . . , 𝑆𝑖𝐾𝑖

. A team name can only contain lowercase Latin letters. Each name is non-empty and
is not longer than 100 symbols. All 𝐾𝑖 names are different.

It is guaranteed that different teams do not have matching names. It is also guaranteed that
𝑁∑︀
𝑖=1

𝐾𝑖 ≤ 350.

Output

If the teams names can end up in the list in any order, print the word YES in the output file.

Otherwise, print the word NO in the first line; in the second line, print any impossible team number
order — 𝑁 space-separated numbers.

Page 20 of 22



XX All-Siberian Programming Contest named after I.V. Pottosin

Internet tour, NSU, September 29, 2019

Examples

input.txt output.txt

3

1

teamname

2

vanechka

ivan

4

albatross

teddybear

vitalya

pythonists

YES

input.txt output.txt

2

2

geometrylovers

epsiszero

1

speedcoderz

NO

2 1

Page 21 of 22



XX All-Siberian Programming Contest named after I.V. Pottosin

Internet tour, NSU, September 29, 2019

Problem 11. Ostap’s dream
Input file: input.txt

Output file: output.txt

Time limit: 3 seconds
Memory limit: 256 MB

Ostap is having a bad dream. In his dream, he is locked in a convex polyhedron with 𝑁 nodes. The
periphery of the polyhedron si split into three continuous parts, with each face of the polyhedron
belonging strictly to one part. If Ostap finds himself near one of the parts of the polyhedron
periphery, he can fall prey to the Sweet Widow. Near the second part lives Korobeinikov, the
record keeper, who is holding a grudge against Ostap; the third part is occupied by his archenemy
competitor, Father Theodore.

Ostap wants to stay away from the evil three. All three threats are equally serious, and he wants
to keep the same distance from the three parts of the polyhedron. Find the sweet spot!

Input

The first line of the input file contains an integer 𝑁 — the number of nodes(3 ≤ 𝑁 ≤ 5 000).

Each of the following 𝑁 lines contain two integers 𝑋𝑖 and 𝑌𝑖 — the coordinates of each consecutive
node of the polyhedron. The coordinates are not greater than 105 in absolute value. The nodes are
defined according to counter-clockwise transveral. It is guaranteed that the polyhedron is strictly
convex.

The last line contains three different integers 𝐶1, 𝐶2, 𝐶3, defining the division of the polyhedron
into parts (1 ≤ 𝐶𝑗 ≤ 𝑁). Each of the three nodes with these numbers has an incident side of
the polyhedron belonging to one part and another incident side in another part. The nodes are
numbered from 1 to 𝑁 in the order of their definition.

Output

If such a point exists, print Yes in the first line of the output file. In the next line, print two real
numbers 𝑋𝑐 and 𝑌𝑐 — the coordinates of the point to which Ostap wants to move.

The distances from this point to the thee parts of the polyhedron periphery must differ from each
other by no more than 10−6 in absolute or relative value.

If there is no such point, print No in the only line of the output file.

Examples

input.txt output.txt

4

8 0

5 3

3 3

0 0

4 3 2

Yes

3.62132025 1.49999996

Page 22 of 22


